
Troi File Plug-in 6.1
for FileMaker Pro 12

USER GUIDE
July 2012

Troi Automatisering
Boliviastraat 11
2408 MX Alphen a/d Rijn
The Netherlands

You can also visit the Troi web site at: <http://www.troi.com/> for additional information.

Troi File Plug-in is copyright 1998-2012 of Troi Automatisering. All rights reserved.

http://www.troi.com/

Table of Contents
Installing plug-ins.. 5
If you have problems... 5
What can this plug-in do?... 6
Software requirements ... 6
Getting started... 7

Using external functions...7
Where to add the external functions?... 7
About file paths and FileSpec's... 7
Simple example... 8
You can use globals or variables ... 8

Summary of functions... 9
Conversion from FileMaker Pro 6... 12
Function reference .. 16

TrFile_AppendContents .. 16
TrFile_AsciiValueToText ... 18
TrFile_ContentsDialog .. 19
TrFile_Control .. 20
TrFile_ConvertFromFMText .. 21
TrFile_ConvertToFMText .. 22
TrFile_CopyFile .. 23
TrFile_CopyFolder .. 24
TrFile_CreateFile ... 25
TrFile_CreateFolder .. 26
TrFile_CreateThumbnail ... 27
TrFile_DeleteFile .. 28
TrFile_DeleteFolder ... 30
TrFile_DiskInfo .. 31
TrFile_DragAndDrop .. 33
TrFile_ExecuteShell ... 35
TrFile_Exists ... 36
TrFile_FileSpecToFullPath .. 37
TrFile_FindFolder ... 38
TrFile_FullPathToFileSpec .. 40
TrFile_GetContents .. 41
TrFile_GetDataSize ... 43

2

Table of Contents (continued)
TrFile_GetDateCreated ... 44
TrFile_GetDateLastAccessed .. 45
TrFile_GetDateModified .. 46
TrFile_GetFileAttribute ... 47
TrFile_GetFileCreator ... 49
TrFile_GetFileHash ... 50
TrFile_GetFileSize .. 51
TrFile_GetFileType ... 52
TrFile_GetPathTo .. 53
TrFile_GetResForkSize .. 55
TrFile_GetTimeCreated .. 56
TrFile_GetTimeLastAccessed .. 57
TrFile_GetTimeModified ... 58
TrFile_GetTimestampCreated ... 59
TrFile_GetTimestampLastAccessed ... 60
TrFile_GetTimestampModified .. 61
TrFile_GetTypeOfItem .. 62
TrFile_Launch ... 63
TrFile_ListDisks .. 64
TrFile_ListFolder .. 65
TrFile_MetaData .. 67
TrFile_MountDisk .. 69
TrFile_MoveFile ... 75
TrFile_MoveFolder .. 71
TrFile_Reveal ... 73
TrFile_SaveFileDialog ... 74
TrFile_Search .. 75
TrFile_SelectFileDialog .. 76
TrFile_SelectFolderDialog ... 77
TrFile_SetContents ... 79
TrFile_SetDefaultCreator .. 81
TrFile_SetDefaultFileSpec ... 82
TrFile_SetDefaultType .. 83
TrFile_SetFileAttribute ... 85

3

Table of Contents (continued)
TrFile_SetMetaData .. 87
TrFile_SetTimestampCreated .. 89
TrFile_SetTimestampModified .. 90
TrFile_Substitute .. 91
TrFile_UnmountDisk .. 93
TrFile_Version ... 94
TrFile_VersionAutoUpdate .. 95

4

Installing plug-ins
Starting with FileMaker Pro 12 a plug-in can be installed directly from a container field. Please see the
EasyInstallTroiPlugins.fmp12 example file to install plug-ins with FileMaker Pro 12.

The instructions below show FileMaker Pro 11. You can also
install the plug-in with FileMaker Pro 9 and 10.

For Mac OS X:
 Quit FileMaker® Pro.
 Put the file “Troi_File.fmplugin” from the folder “Mac OS

Plug-in” into the “Extensions” folder in the FileMaker Pro
application folder.

 If you have installed previous versions of this plug-in, you
are asked: “An older item named “Troi_File.fmplugin”
already exists in this location. Do you want to replace it
with the one you’re moving?’. Press the OK button.

 Start FileMaker Pro. The first time the Troi File Plug-in is
used it will display a dialog box, indicating that it is
loading and showing the registration status.

For Windows:
 Quit FileMaker Pro.
 Put the file "Troi_File_Plugin.fmx" from the directory "Windows" into the "Extensions" subdirectory in the

FileMaker Pro application directory..
 If you have installed previous versions of this plug-in, you are asked: “This folder already contains a file

called 'Troi_File_Plugin.fmx'. Would you like to replace the existing file with this one?’. Press the Yes
button.

 Start FileMaker Pro. The Troi File Plug-in will display a dialog box, indicating that it is loading and showing
the registration status.

TIP You can check which plug-ins you have loaded by going to the plug-in preferences: Choose Preferences from
the Edit menu, and then choose Plug-ins.

You can now open the file "All File Examples.fp7" to see how to use the plug-in's functions. There is also a function
overview available.

If you have problems
This user guide tries to give you all the information necessary to use this plug-in. So if you have a problem please
read this user guide first. Also you might visit our support web page:

 <http://www.troi.com/support/>
This page contains FAQ's (Frequently Asked Questions), help on registration and much more. If that doesn't help you
can get free support by email. Send your questions to support@troi.com with a full explanation of the problem. Also
give as much relevant information (version of the plug-in, which platform, version of the operating system, version of
FileMaker Pro) as possible. Note that due to spam we have to filter incoming email. It might happen that non-spam
email is filtered out too. If you have sent an email and you don't get an answer, try to send another email, slightly
differently formulated and include the word "FileMaker" in the body text.
If you find any mistakes in this manual or have a suggestion please let us know. We appreciate your feedback!

TIP You can get more information on returned error codes from our OSErrrs database on our web site:
<http://www.troi.com/software/oserrrs.html>. This free FileMaker database lists all error codes for Windows and
Mac OS X!

5

http://www.troi.com/support/
http://www.troi.com/software/oserrrs.html

What can this plug-in do?
The Troi File Plug-in is a very powerful tool for getting access to information outside the FileMaker database.
Any files stored on the rest of the computer can be accessed through the functions of the plug-in. All
from within FileMaker you can:

• get data out of files on the disk of the computer
 • create files anywhere on the hard disk and put data from FileMaker fields into it
 • manipulate files and folders on the disk, like creating/deleting/copying/moving

• get metadata from images and movies, such as size, resolution, Exif IPTC etc.
• and much more...

Software requirements
System requirements for Mac OS X
Mac OS X 10.5.7 or higher (Leopard) or Mac OS X 10.6.x (Snow Leopard), Mac OS X 10.7 Lion.

System requirements for Windows
Windows XP Professional, Home Edition (SP 3) on Intel-compatible computer, Pentium III 700MHz or higher
Windows Vista on Intel-compatible computer, Pentium III 800MHz or higher
Windows 7 on Intel-compatible computer 1 GHz or faster
QuickTime 7 or later for some image related functions

FileMaker Pro requirements
FileMaker Pro 10 or FileMaker Pro Advanced 10 or higher.
FileMaker Pro 11 or FileMaker Pro Advanced 11 or higher.
FileMaker Pro 12 or FileMaker Pro Advanced 12 or higher.

NOTE We have successfully tested it with FileMaker Pro 9, but we no longer provide active support for this
version. Troi File plug-in will also probably run fine with FileMaker 7 to 8.5, but we have not tested this and we no
longer provide support for this . Also note that Troi File Plug-in, with older FileMaker versions, will probably run on
older operating systems for example Mac OS X 10.3.9 or Windows 2000, however we do not support this.

Troi File Plug-in version 6 does NOT run on versions prior to FileMaker Pro 7.0. If you need to run on versions prior
to FileMaker Pro 7: see our web site for the File Plug-in 2.8.2 which is using the 'classic' plug-in API, which is using
the External("FunctionName" , "parameter") format. The 2.8.2 version runs on FileMaker Pro 6, 5.x and 4.x.

FileMaker Server requirements
FileMaker Server 10 or FileMaker Server Advanced 10 or higher.
FileMaker Server 11 or FileMaker Server Advanced 11 or higher.
FileMaker Server 12 or FileMaker Server Advanced 12 or higher.

You can use FileMaker Server to serve databases that use functions of the Troi File Plug-in (client-side): You need to
have the plug-in installed at the clients that use these functions.

Troi File Plug-in can also be used by FileMaker Server as a server-side plug-in or as a plug-in used by the web
publishing engine. To use Troi Plug-ins as a server-side or web-side plug-in you need to purchase a special
Server/Web license. More information can be found in the download or here:
<http://www.troi.com/support/filemaker-server-side-plug-ins.html>

6

http://www.troi.com/support/filemaker-server-side-plug-ins.html

Getting started
Using external functions
The Troi File Plug-in adds new functions to the standard functions that are available in FileMaker Pro. The functions
added by a plug-in are called external functions. You can see those extra functions for all plug-ins at the top right of
the Specify Calculation box:

You use special syntax with external functions: FunctionName(parameter1 ; parameter 2) where FunctionName is
the name of an external function. A function can have zero or more parameters. Each parameter is separated by a
semi-colon. Plug-ins don't work directly after installation. To access a plug-in's function, you need to add the calls to
the function in a calculation, for example in a text calculation in Define Fields or in a ScriptMaker Script.

Where to add the external functions?
Most of the external functions for this plug-in are intended to be used in a script step using a calculation, in a Set
Field script step. For quite a lot of functions of this plug-in it makes no sense to add them to a define field
calculation, as the functions will have side effects. When you are defining fields (choose Define Database from the
File menu), only some of the functions will be visible. Those should be safe to use there, but be careful and think
about before adding external functions to a calculation field.

About file paths and FileSpec's
NEW You can now also use FileMaker styled paths, like "filemac:/MacHD/folder/file.txt". See below
for more information.

To be able to specify a file or folder, the plug-in can use a FileSpec, which is short for File Specification.

On Windows this is always a full path like this for a file:

C:\Data Files\Database\Test.Txt

and similar to this for a folder:

C:\My Files\Main\

If you use the FileMaker style paths this becomes:
7

Select External functions
to see all the plugins.

Plug-in names

External functions
shown here

An External
function

filewin:/C:/Data Files/Database/Test.Txt

and similar to this for a folder:

filewin:/C:/My Files/Main/

On Mac OS X a FileSpec can be a full path, a FileMaker styled path or an FSSpec. A full path on Mac looks like this:

Mac HD:Data Files:Database:testfile

and similar to this for a folder:

Archive CD:My Files:Main:

If you use the FileMaker style paths on Mac OS X this becomes for a file:

filemac:/Mac HD/Data Files/Database/Test.Txt

and similar to this for a folder:

filewin:/Archive CD/My Files/Main/

Alternatively FileSpec can also be a FSSpec, which has the following format:

:volumeID:directoryID:fileName

The plug-in recognizes the FSSpec by the colon as the first character. An example may be:

:-1:300:testfile

NOTE With Mac OS X FSSpec's are no longer recommended. Therefore most plug-in functions now return a full
path.

NOTE 2 On Mac OS X a volume name and therefore a full path need not be unique. Be careful with this. Also note
that FSSpec's are always unique, but the values can change between restarts of your computer on Mac OS X.
This means that if you want to save a file's specification you best do this as a full path or a FileMaker styled path.

Simple example
Say you want to get the contents of a report file that contains text. The file resides on a known place on the
harddisk. Say you want the text to be put in the text field "myTextField". In ScriptMaker create a script
"Get Report Text". Add the following script step to this script:

Set Field[myTextField, TrFile_GetContents("-Unused" , "C:\DataFiles\Report.txt")]

If you run this script the contents of the file is put in the field "myTextField".

NOTE Function names, like TrFile_GetContents are no longer case sensitive.

As you can see the path "C:\DataFiles\Report.txt" in the script above makes it clear that this script only
works on Windows. If you want to remove this platform dependency you can use a variable or global text field,

8

which holds the path to the folder. Say the full path on Mac OS would be "Disk:DataFiles:Report.txt". Also
assume you have defined a global text field "gPathToFolder". The script would then become like this:

If [Abs(Status(CurrentPlatform)) = 1]
Comment[...on Mac OS and Mac OS X...]
Set Field[gPathToFolder, "Disk:DataFiles:")]

Else
Comment[...on Windows...]
Set Field[gPathToFolder, "C:\DataFiles\")]

Endif
Set Field[myTextField, TrFile_GetContents("-Unused" , gPathToFolder & "Report.txt")]

Of course the global gPathToFolder could be set earlier in a separate script, as part of the preferences.

Please take a close look at the included example files, as they provide a great starting point. From there you
can move on, using the 60 functions of the plug-in as building blocks. Together they are a powerful tool set for
working with files on the disk.

You can use globals or variables
With the release of FileMaker Pro 8 and later it is possible to use variables in calculations. Our example files in the
download now both use global fields and variables to pass parameters and store the results of a plug-in function.

As this release of Troi File is intended for FileMaker Pro 9 and higher, we will be moving to use variables wherever
possible. Note that not all examples are using variables yet.

All the plug-in functions work with variables just fine. For example if you have these script steps:

Set Field [this::gPath, "your path here"]
Set Field [this::gImageDesc, TrFile_MetaData("-GetImageDescription" ; this::gPath)]

With variables you can alternative use:

Set Variable [$Path, "your path here"]
Set Variable [$ImageDesc, TrFile_MetaData("-GetImageDescription" ; $Path)]

The main advantage of variables is that you don't need to define global fields that clutter your database definitions.
The variables can stay local to the script.
See for example the new ManageMedia.fp7 example file, which uses variables in its scripts. Note that this example
file also depends on global fields, as the scripts have been copied from an older example file.

9

Summary of functions

The Troi File Plug-in adds the following functions to FileMaker Pro:

function name short description
TrFile_AppendContents append characters to the contents of an existing file
TrFile_AsciiValueToText Converts numbers to their equivalent ASCII characters.
TrFile_ContentsDialog shows the user a file selection dialog, contents of file is returned
TrFile_Control controls (disable and enable)the functions of the plug-in
TrFile_ConvertFromFMText converts text to text formatted in the format of the current platform
TrFile_ConvertToFMText converts text to text formatted in the internal FileMaker format
TrFile_CopyFile copies a file to the specified path
TrFile_CopyFolder copies a folder to the specified folder path.
TrFile_CreateFile creates a new empty file
TrFile_CreateFolder creates a new folder

TrFile_CreateThumbnail creates a thumbnail (a small image of normally 80x80 pixels) from an image
TrFile_DeleteFile deletes a file
TrFile_DeleteFolder deletes the folder indicated by the FolderSpec
TrFile_DiskInfo retrieves information about a specified disk
TrFile_DragAndDrop implements drag and drop of files to a FileMaker window
TrFile_ExecuteShell execute a command in the (UNIX or Windows) shell of the operating system
TrFile_Exists check for the existence of a file or folder
TrFile_FileSpecToFullPath get full path of a file or folder from an FSSpec
TrFile_FindFolder finds special folders
TrFile_FullPathToFileSpec changes the full name path to the standard Mac OS FSSpec
TrFile_GetContents get (a part of) the contents of the file

TrFile_GetDataSize get the size of the data of a file
TrFile_GetDateCreated get the creation date of a file
TrFile_GetDateModified get the modification date of a file
TrFile_GetFileAttribute returns an attribute of the file specified by the FileSpec
TrFile_GetFileCreator get the Creator of a file
TrFile_GetFileHash returns the MD5 hash value (checksum) of a file

TrFile_GetFileSize get the file size of a file
TrFile_GetFileType get the FileType of a file
TrFile_GetPathTo returns the path to the FileMaker application or the current FileMaker file
TrFile_GetDateLastAccessed returns the date a file was last accessed
TrFile_GetTimeLastAccessed returns the time a file was last accessed
TrFile_GetTimestampLastAccessed

returns the timestamp when a file was last accessed

TrFile_GetResForkSize get the size of the resource fork of a file
TrFile_GetTimeCreated get the creation time for the file specified by the FileSpec
TrFile_GetTimeModified get the modification time for the file specified by the FileSpec
TrFile_GetTimestampCreated get the creation date and time of a file
TrFile_GetTimestampModified get the modification date and time of a file
TrFile_GetTypeOfItem get the type of an item, for example if it is a folder or a file.
TrFile_Launch opens a file with the file's application

TrFile_ListDisks lists the names of all currently available disks
TrFile_ListFolder lists the contents of a folder

10

Summary of functions (continued)
function name short description
TrFile_MetaData gets metadata, out of an image file
TrFile_MountDisk connect to a shared network volume, by mounting the disk
TrFile_MoveFile moves (or renames) a file from one disk location to another
TrFile_MoveFolder moves (or renames) a folder to the specified folder path.
TrFile_Reveal shows a file (or folder) in its enclosing folder
TrFile_SaveFileDialog presents the user with a save file dialog
TrFile_Search searches a volume (disk) for a file or folder (directory)
TrFile_SelectFileDialog presents the user with a standard dialog and displays all files in a directory

TrFile_SelectFolderDialog shows the user a folder selection dialog
TrFile_SetContents sets the contents of an existing file
TrFile_SetDefaultCreator specifies the file creator to be used when creating a new file
TrFile_SetDefaultFileSpec sets the FileSpec (i.e. the file) to be used in succeeding functions
TrFile_SetDefaultType sets the FileType for displaying and creating new files
TrFile_SetFileAttribute sets an attribute of the file specified by the FileSpec
TrFile_SetMetaData sets metadata into an image file (JPEG)
TrFile_SetTimestampCreated sets the creation date/time of the file specified by the FileSpec.
TrFile_SetTimestampModified sets the modification date/time of the file specified by the FileSpec.
TrFile_Substitute substitutes characters in a (text) file
TrFile_UnmountDisk unmounts and ejects a remote or removable disk
TrFile_Version use this function to see which version of the plug-in is loaded
TrFile_VersionAutoUpdate standard version number for AutoUpdate of FileMaker Server

11

Conversion from FileMaker Pro 6
For those still using FileMaker Pro 6: we strongly recommend you convert to a newer version of FileMaker Pro,
currently FileMaker Pro 12 and use the Troi File Plug-in 6.1 with this.

Note 1 Below we will discuss conversion using Troi File Plug-in 6. Note that Troi File Plug-in 3.0 was the the first
version using the FMP7 API, with FileMaker Pro 7. So this discussion also applies to versions Troi File Plug-in 3.0
and later, for example Troi File Plug-in 3.6 and FileMaker Pro 8.x or 10.

Note 2 The function API is the same for FileMaker Pro 7 through FileMaker Pro 12. Troi File Plug-in 6 is back-
ward compatible with Troi File Plug-in 5.x, 4.x and 3.x, and conversion is not needed between those versions.

Troi File Plug-in 2.8.2 (Classic API) is compatible with FileMaker 7

The last classic File Plug-in we released is Troi File Plug-in 2.8.2. Troi File Plug-in 2.8.2 in general does work with
FileMaker Pro 7, without modification. We have found no other issues with FileMaker Pro 7 than the ones below.
We have not tested 2.8.2 in later FileMaker versions.

TrFile-ReferenceToClip
This function does not work with FileMaker Pro 7. Solution: use the native FileMaker 7 way to import as a reference.
See the RefPict.fp7 example file in the download of File Plug-in 6.

TrFile-GetPathTo with switch -CurrentFileName
This function does not work with FileMaker Pro 7 when using the "-CurrentFileName" switch. Solution: use the
built-in Get(FilePath) function.
The other switches still work. See the GetpathTo.fp7 example file in the download of Troi File Plug-in 6, for an
example on how to convert a FileMaker path from Get(FilePath) to a full path in the format the Troi File Plug-in
understands.

General issue for all classic plug-ins with higher ASCII's

FileMaker Pro 7 has a new internal architecture, which is using Unicode for the text fields. FileMaker Pro 6 only
used ASCII encoding. All plug-ins written for the 'classic' FileMaker 6 architecture do not receive characters that are
outside this ASCII range, these characters are replaced with spaces. In general our classic plug-ins should be
compatible as long as the text used is lower ASCII text.

The File Plug-in 2.8.2 is using the classic API, so only characters in the ASCII range will work.

12

Conversion with Troi File Plug-in 6 (Native FileMaker 7 API)

Troi File Plug-in 6 was created specifically for FileMaker Pro 11, and uses the more powerful plug-in API of
FileMaker Pro 7. Below are some considerations when converting to FileMaker Pro 7-11 using Troi File Plug-in 6.

New function syntax

The plug-in's functions have a different syntax compared to the FileMaker 6 plug-in. For example the
TrFile_GetContents function has this syntax in the classic API:

External("TrFile-GetContents", "fileSpec| start | size")

The syntax in the new API looks like this:

TrFile_GetContents(switches ; FileSpec ; { start ; { size }})

Note that functions look like a real function call, no longer a call to External(). Also a hyphen "-" is no longer
allowed, so the hyphens have changed to underscores "_" instead. Note too that parameters don't have to be
concatenated with a pipe. Instead use a semicolon ";" to separate the parameters. The brackets "{}" indicate optional
parameters. Below is an example how this function would appear in ScriptMaker:

Set Field [textField , TrFile_GetContents("-Unused" ; gFileSpec ; 0 ; 1000)]

TIP Function names are no longer case sensitive, and will change to the correct case after you close the "Specify
Calculation" dialog box.

Multiple parameters and new switches

As seen from the syntax, plug-in functions now can have multiple parameters. To make this plug-in more consistent,
all functions now have a switches parameter as the first parameter. This makes enhancing the plug-in in the future
easier. Finally we renamed a few functions and also removed any spaces in the name. See the specific functions notes
below for the specifics.

TIP Switches are not case sensitive.

Omitting optional parameters
When you omit an optional parameter be sure to add an extra semicolon after the last one, otherwise FileMaker will
show an alert that there are too few parameters in this function. For example, below we omitted the 3rd parameter at
the end (initialfolder). This is the correct way to do this:

Set Field [theFile, TrFile_SelectFileDialog("-Unused" ; "Select a file" ;)]

13

New parameter limits
The plug-in functions now have a size limit of 1 Gigabyte per parameter (up from the total of 64000 character limit
for all parameters in FileMaker 6). The Troi File Plug-in 6 can handle those bigger parameters, however, displaying
the results in FileMaker Pro 7 can take a long time. For example we read in a 300.000 character text from a file on
disk with this script step:

Set Field [textField , TrFile_GetContents("-Unused" ; gFileSpec ;)]

The step itself took less than a second. However, FileMaker then updated the layout, which took about 20 seconds!

Converting the function call
When converting FileMaker does not change the plug-in call. So after conversion you need to do this manually. Here
are the global steps:

• remove the External(" at the beginning
• in the function name: change - to _ and remove spaces, add a (at the end.
• change the name of the function (in some cases)
• add as first parameter: "-Unused" (if no switch parameter is there)
• split the remaining parameters: separate each with a ;

Let's for example take this File Plug-in 2.8.2 call:

External("TrFile-Get FileSpec Dialog", "Please select a file|" & gInitialFolder)

This needs to be changed to this File Plug-in 6 call:

TrFile_SelectFileDialog("-Unused" ; "Please select a file" ; gInitialFolder)

TIP Just copy script or steps from the example files, they are all in the File Plug-in 6 format.

Renamed functions

The table below will help you figure out the new names for changed function names:

Old function name New function name Notes
TrFile-FileSpec To FullPath TrFile_FileSpecToFullPath Only removed spaces
TrFile-FullPath To FileSpec TrFile_FullPathToFileSpec Only removed spaces
TrFile-Get FileSpec Dialog TrFile_SelectFileDialog
TrFile-GetDateTimeCreated TrFile_GetTimestampCreated
TrFile-GetDateTimeModified TrFile_GetTimestampModified
TrFile-Save FileSpec Dialog TrFile_SaveFileDialog
TrFile-ThumnailToClip TrFile_CreateThumbnail Now returns the thumbnail as a container

14

Specific functions notes

The table below lists conversion issues with specific functions:

Function name Notes
TrFile_DeleteFolder A folder may contain an invisible .DS_Store or Icon file on Mac OS X, there

is currently no easy way to delete it when only those 2 files are there.
TrFile_FileSpecToFullPath Renamed from "TrFile-FileSpec To FullPath" (removed spaces).
TrFile_FindFolder By default now returns a full path, for example: "Mac HD:System:".

See the "-ReturnFSSpec" switch to change this.
TrFile_FullPathToFileSpec Renamed from "TrFile-FullPath To FileSpec" (removed spaces).
TrFile_GetTimestampCreated Renamed from "TrFile-GetDateTimeCreated". It now returns a timestamp.
TrFile_GetTimestampModified Renamed from "TrFile-GetDateTimeModified". It now returns a timestamp.
TrFile_GetFileAttribute Mac OS X: finder comment does not work.
TrFile_GetPathTo By default now returns a full path, for example: "Mac HD:text.txt".

See the "-ReturnFSSpec" switch to change this.
TrFile_Launch Mac OS X: also opens folders.
TrFile_ListDisks Higher Unicode characters in disk names don't work correctly yet.
TrFile_ListFolder Higher Unicode characters in disk names don't work for short filenames. Use

the -Longnames switch.
TrFile_ReferenceToClip Obsolete See below.
TrFile_SaveFileDialog Renamed from "TrFile-Save FileSpec Dialog". By default now returns a full

path, for example: "Mac HD:text.txt". See the "-ReturnFSSpec" switch to
change this.

TrFile_Search Higher Unicode characters in the search parameter don't yet work as
expected.

TrFile_SelectFileDialog Renamed from "TrFile-Get FileSpec Dialog". By default now returns a full
path, for example: "Mac HD:text.txt". See the "-ReturnFSSpec" switch to
change this.

TrFile_SelectFolderDialog By default now returns a full path, for example: "Mac HD:System:".
See the "-ReturnFSSpec" switch to change this.

TrFile_Substitute Higher Unicode characters in replace string and file can cause confusion.
TrFile_CreateThumbnail No longer uses the clipboard, but now returns the thumbnail as a container.

See the Thumbnail.fp7 example file for the implementation details.

Obsolete functions
Below the functions that are not in the Troi File Plug-in 3.0 and later:

Function name Notes
TrFile_ReferenceToClip This function is not implemented, and will return $$-4221. Use this script

step instead:
Set Field [container, "image:/DISKNAME/foldername/filename.jpg"]
See the RefPict.fp7 example file for a way to do this.

Troi-Set Default Separator No longer needed. API allows multiple parameters.
Troi-Set Separator Once No longer needed. API allows multiple parameters.

15

Function Reference
TrFile_AppendContents

Syntax TrFile_AppendContents(switches; text)
Append characters to the contents of an existing file indicated by the “SetDefaultFileSpec” function.

Parameters
switches these alter the behaviour of the function
text the characters that you want to add at the end of the default file
Switches can be empty or one of this:
-Encoding=Native (default)
-Encoding=UTF8
-Encoding=ASCII_DOS
-Encoding=ASCII_Windows
-Encoding=ASCII_Mac
-Encoding=ISO_8859_1 (Windows Latin-1)
-Encoding=BytesOnly only characters in the range 0-255 are written, others are skipped
This determines the character encoding of the appended data.
You can also add this switch:
-CRtoCRLF Use Windows line endings. Returns in the text parameter are substituted with CRLF (Carriage
Return followed by a Line Feed) in the written file.

Returned result
The returned result is an error code. An error always starts with 2 dollars, followed by the error code. You should always
check for errors. Returned error codes can be:

0 no error The string of characters were added to the file
$$-1 genericErr The file could not be opened for appending (You might need to create the file first).
$$-2 genericErr The file could not be opened for appending (You might need to create the file first).

Other errors may be returned.

Special considerations
Use the function TrFile_SetDefaultFileSpec first to set the default file. See also the functions:
TrFile_Save FileSpec Dialog to ask the user for a FileSpec, TrFile_SetDefaultFileSpec to indicate the file to affect.
Note that the maximum size of TrFile_AppendContents is currently 150 million characters (per call to the function). This
equals to about max. 600 million characters written. This depends on the encoding, for example one Unicode character
encoded as UTF-8 can require up to 4 character in the written file.
Up to v5.0 there was an error in the documentation: it was incorrectly stated that UTF-8 was the default encoding. The
default is -Encoding=Native, which is the current encoding as set in the system preference, for example on western
Windows systems it usually is ISO_8859_1 or ASCII_Windows. On Mac OS X the default will be ASCII_Mac.
To be able to export all possible characters (like chinese characters) it is best to export with encoding UTF8.

Example usage
Assume your C disk already contains a file "Testtext.txt", which contains the text "Hello". We assume that a global number
field gErrorCode is defined. In ScriptMaker create the following script:

Set Field[gErrorCode, TrFile_SetDefaultFileSpec("-Unused" ; "C:\Testtext.txt")]
If [gErrorCode = 0]

Set Field[gErrorCode, TrFile_AppendContents("-Unused" ; " there.")]
End If

16

TrFile_AppendContents
This script will add the text " there." to the end of the file. After running the script once the file will contain "Hello there.".
If you run the script again the file will contain "Hello there. there."

Example 2
This shows how to write to a log file. We assume that in your FileMaker file the following fields are defined:
 gErrorCode Global, number gXplatformReturn Global, text
 gLogFilePath Global, text gLogtext Global, text
gLogFilePath should contain the path to an existing log file, for example "D:\Logs\L2005_01.TXT" (Windows) or "Mac
HD:Logs:Log 2000_01" (Mac). gXplatformReturn should contain a return on Mac and a return and a linefeed on Windows.
gLogtext is the text you want to log. In ScriptMaker add the following scriptstep to your startup script:
 Set Field[gErrorCode, TrFile_SetDefaultFileSpec("-Unused" ; gLogFilePath)]
This will set the default file to your log file. Then whenever you need to write a line to the log fill the field gLogtext and
perform this script step:

Set Field[gErrorCode, TrFile_AppendContents("-Encoding=UTF8" ;
DateToText(Get(CurrentDate)) & " " &
TimeToText(Get(CurrentTime)) & " text: " & gLogtext & gXplatformReturn))]

This script step will add a line every time this script is performed. The log file might look like this:
12/31/2005 10:23:56 text: user Peter logged in
12/31/2005 14:31:02 text: user Peter logged out
12/31/2005 14:31:02 text: closed file "Invoices.fp7"
etc...

17

TrFile_AsciiValueToText

Syntax TrFile_AsciiValueToText(switches ; ASCIIvalues { ; separator })
Converts (one or more) numbers to their equivalent ASCII characters.

Parameters
switches these alter the behaviour of the function
ASCIIvalues one or more numbers in the range from 0-255 separated by a separator
separator (optional) the separator between the values, if you omit this parameter " " and | is used.
Switches can be empty or one of this:
-Encoding=Native (default) use Unicode encoding for the higher ASCII's 128-255
-Encoding=ASCII_Mac use Mac ASCII for the higher ASCII's 128-255 (as used in fmp 6)

Returned result
The converted ASCII text

Special considerations
You can also use hexadecimal notation for the numbers. Use 0x00...0xFF to indicate hexadecimal notation.
The graphic rendition of characters greater than 127 is undefined in the American Standard Code for Information
Interchange (ASCII Standard) and varies from font to font and from computer to computer and may look different when
printed.
Values higher than 255 are ignored.
This function is the same as the Serial_AsciiValueToText in the Troi Serial plug-in.

Example usage
Set Field [text, TrFile_AsciiValueToText ("-Unused" ; "65 65 80 13")]
or
Set Field [text, TrFile_AsciiValueToText ("-Unused" ; "65|65|80|13")]
This will both result in the text "AAP<CR>" where <CR> is a Carriage Return character

Example 2
Set Field [text, TrFile_AsciiValueToText("-Unused" ; "0x31-0x32-0x33-0x0D-0x0A" ; "-")]

This will result in the text "123<CR><LF>" where <CR> is a Carriage Return and <LF> is a Line Feed character.

Example 3
The switch -Encoding=ASCII_Mac is to be able to encode all 256 values possible in FileMaker Pro 6 to their converted
values in FileMaker Pro 7 and later. For example the Apple Logo character with Mac ASCII code 240 is converted to
Unicode 63743 in FileMaker 7.

Set Field [text, TrFile_AsciiValueToText("-Encoding=ASCII_Mac" ; "240")]
This will result in the text "" .

18

TrFile_ContentsDialog

Syntax TrFile_ContentsDialog(switches ; { prompt ; { initialFolder } })
Shows the user a file selection dialog, the contents of the selected file is returned.
This function is a combination of "TrFile_Get FileSpec Dialog" followed by a "TrFile_GetContents" function.

Parameters
switches these alter the behaviour of the function
prompt (optional) adds a prompt text to the GetFile Dialog. It may be left empty
initialFolder (optional) the FileSpec or path to the folder where the dialog initially starts
Switches can be empty or one of this:
-Encoding=Native (default)
-Encoding=UTF8
-Encoding=ASCII_DOS
-Encoding=ASCII_Windows
-Encoding=ASCII_Mac
This determines the character encoding of the text to be read.
You can also add this switch:
-ConvertToFMPLinebreaks this will convert any line breaks in the data to the line break FileMaker
expects: CRLF, LF and CR will all become CR.

Returned result
The characters of the file the user selected. If the user pressed cancel an error code "$$-1" is returned.

Special considerations
You can read up to 2 Gb into a field. However more than 500000 characters will slow down FileMaker considerably.
Only use -ConvertToFMPLinebreaks when getting text files, as it might change the data returned. If for example you use it
with an image file the imported image might get corrupted.
On Mac the dialog will filter and show only text files by default. To change the default filtering use the
TrFile_SetDefaultType function, or take a look at "Filtering Files" in the example databases.
Up to v5.0 there was an error in the documentation: it was incorrectly stated that UTF-8 was the default encoding. The
default is -Encoding=Native, which is the current encoding as set in the system preference, for example on western
Windows systems it usually is ISO_8859_1 or ASCII_Windows.

Example usage
 Set Field [result, TrFile_ContentsDialog("-Unused" ; "Please select the text file you want to be used:|D:\DataFiles\")]
You can also use a calculation for the prompt, for example this one which uses a global text field:
 Set Field [result, TrFile_ContentsDialog("-Unused" ; "Please select the Excel file """ & gFileName & """:")]
This will result in a file selection dialog with this prompt text: 'Please select the Excel file "invoices99.xls":'.

19

TrFile_Control

Syntax TrFile_Control(switches; { password })
Controls the functions of the plug-in. You can disable and enable the functions of the plug-in. This allows you to create
powerful solutions, without the risk of users misusing the functions, causing unwanted or harmful results.

Parameters
switches these determine how the function works. You can disable or enable all functions
password the password to be used
switches can be one of the following:
-DisableAllFunctions allow the user no acces to functions
-EnableAllFunctions allow the user acces to all functions
-CurrentEnabledStatus get the status, 1 = plug-in is enabled, 0 plug-in is disabled

Returned result
The returned result is an error code. An error always starts with 2 dollars, followed by the error code. You should always
check for errors. Returned error codes can be:

0 no error
$$-4217 pwdAlreadySet password already set (enable first)
$$-4218 alreadyEnabled functions are already enabled
$$-4219 pwdWrong password was wrong

 Other errors may be returned.

Special considerations
When you call a disabled function an error code of $$-4220 is returned.
After restart of FileMaker all the functions of the plug-in are reenabled.

Example usage
 Set Field[result, TrFile_Control("-disableAllFunctions" ; "secret password")]
This will disable the functions of the plug-in.

Example 2
We assume that in your FileMaker file the following fields are defined:
 gErrorCode Global, number
 gPassword Global, text
gPassword should contain a password, for example "rapunsel". In ScriptMaker add the following to the startup script:
 Set Field[gErrorCode, TrFile_Control("-disableAllFunctions" ; gPassword)]
This will disable the plug-in function. When you want to use the plug-in add the following script steps:
 Set Field[gErrorCode, TrFile_Control("-enableAllFunctions" ; gPassword)]
 ... add powerful functions here...
 Set Field[gErrorCode, TrFile_Control("-disableAllFunctions" ; gPassword)]
This will temporary enable the plug-in functions.

20

TrFile_ConvertFromFMText

Syntax TrFile_ConvertFromFMText(switches ; text)
Converts text formatted in the internal FileMaker format to text formatted in the format of the current operating system
running on this computer. On Windows the High ASCII characters (128-255) are not the same as stored internally in
FileMaker.

Parameters
switches reserved for future use, leave empty or set to "-Unused"
text the text in internal FileMaker format

Returned result
The text in the native format of the operating system of this computer. This will be Windows format on Windows and Mac
OS format on Mac OS.

Special considerations
NOTE Function not recommended, only for compatibility with older plug-in. Use the "-Encoding=xxx" switches of
TrFile_AppendContents and TrFile_SetContents instead. This function also converts line endings. In the internal FileMaker
format (and on Mac) lines end with a single <CR> character. On Windows this function will replace all CR's to the normal
line ending on Windows, the two characters <CR><LF>.

Example usage
Assume that on Windows we want to create the file "HighText.Doc", which contains the text "Bjørn,
<CR><LF>Münchenstraße 2". Add this script step:
 Set Field[result, TrFile_ConvertFromFMText("-Unused" ; "Bjørn, ¶Münchenstraße 2")]
The result will look like:
"Bj¯rn,
M¸nchenstrafle 2".
This may look wrong, but when you use for example the TrFile_SetContents function it will appear correct in the file.
Example 2
We assume that in your FileMaker file the following fields are defined:
 contents text
 gErrorCode Global, number
 gOutputFile Global, text
 gContentsConverted Global, text
gOutputFile should contain the path to a non-existing file, for example "D:\Out.txt" (Windows) or "Mac HD:Out.
txt" (Mac). In ScriptMaker add the following script steps:
 Set Field[gContentsConverted, TrFile_ConvertFromFMText("-Unused" ; contents)]
 ## now gContentsConverted is in the format of the operating system
 Set Field[gErrorCode, TrFile_CreateFile("-Unused" ; gOutputFile)”]
 Set Field[gErrorCode, TrFile_SetDefaultFileSpec("-Unused" ; gOutputFile)]
 If [gErrorCode = 0]
 Set Field[gErrorCode, TrFile_SetContents("-Unused" ; gContentsConverted)]
 End If
This will get the contents of the contents field into the file . In the first step the high ASCII characters will be converted
from the internal FileMaker format. This will work transparant on both Mac OS and Windows.

21

TrFile_ConvertToFMText

Syntax TrFile_ConvertToFMText(switches ; text)
Converts text formatted in the format of the current operating system running on this computer to text formatted in the
internal FileMaker format. On Windows the High ASCII characters (128-255) are not the same as stored internally in
FileMaker.

Parameters
switches reserved for future use, leave empty or set to "-Unused"
text the text in the native format of the operating system of this computer. This will be Windows
format on Windows and Mac OS format on Mac OS

Returned result
The text in internal FileMaker format.

Special considerations
NOTE Function not recommended, only for compatbility with older plug-in. Use the "-Encoding=xxx" switches of
TrFile_AppendContents and TrFile_SetContents instead. This function also converts line endings to the internal format.
On Windows lines end with the two ASCII characters <CR><LF>. This is converted to the single character <CR> as used
by the internal FileMaker format.

Example usage
Assume that on Windows we have the file "HighText.Doc", which contains the text "Bjørn, <CR><LF>Münchenstraße 2".
Add this script step:
 Set Field[result, TrFile_ConvertToFMText("-Unused" ; TrFile_GetContents("-Unused" ; "C:\HighText.Doc"))]
This will store the contents of the "HighText.Doc" in the result field, with the high ASCII characters converted to the
internal FileMaker format. In the result field this will look like this:
 Bjørn, ¶
 Münchenstraße 2
Example 2
We assume that in your FileMaker file the following fields are defined:
 contents text
 gFileSpec Global, text
gFileSpec should contain the path to an existing file, for example "D:\Readme.txt" (Windows) or "Mac HD:Readme.
txt" (Mac). In ScriptMaker add the following script step:
 Set Field[contents, TrFile_GetContents("-Unused" ; gFileSpec)]
 ## now the contents field is in the format of the operating system
 Set Field[contents, TrFile_ConvertToFMText("-Unused" ; contents)]
This will get the contents of the file into the contents field. In the second step the high ASCII characters will be converted
to the internal FileMaker format. This will work transparant on both Mac OS and Windows.

22

TrFile_CopyFile

Syntax TrFile_CopyFile(switches ; sourceFilepath ; destinationFilePath)
Copies a file to the specified path.

Parameters
switches reserved for future use, leave empty or set to "-Unused"
sourceFilePath the path or Filespec to the file to copy
destinationFilePath the path or Filespec where the file must be copied to

Returned result
The returned result is an error code. An error always starts with 2 dollars, followed by the error code. You should always
check for errors. Returned error codes can be:

0 no error The file was copied
$$-43 fnfErr Source file not found, or destination directory does not exist
$$-48 dupFNErr Destination file already exists
$$-1 genericErr The file could not be copied

Other errors may be returned.

Special considerations
NEW you can use FileMaker styled paths now, like "filemac:/MacHD/folderA/test.txt".
Use the TrFile_DeleteFile to delete a file first if it exists. See also the function TrFile_SaveFileDialog to get a FileSpec for
a file.

Example usage
Assume your C disk already contains a file "Testtext.txt". We assume that a global number field gErrorCode is defined. In
ScriptMaker create the following script:
 Set Field[gErrorCode, TrFile_CopyFile("-Unused" ; "C:\Testtext.txt" ; "D:\MyFiles\TestDupl.txt")]
This script will copy the file "Testtext.txt" to the "TestDupl.txt" file in directory "MyFiles" on the D: disk. On Mac OS the
paths will be of the form "Mac HD:MyFiles:TestDupl.txt".

Example 2
We assume that in your FileMaker file the following fields are defined:
 gErrorCode Global, number
 gSourceFilePathGlobal, text
 gDestFilePath Global, text
gSourceFilePath should contain the path to an existing file, for example "D:\Logs\Log01.TXT" (Windows) or "Mac HD:
Logs:Log 1" (Mac). gDestFilePath should contain the path to the destination and should not exist, for example "D:
\Logs\L2000_01.TXT" (Windows) or "Mac HD:Logs:Log 2000_01" (Mac). In ScriptMaker add the following script step:
 Set Field[gErrorCode, TrFile_CopyFile("-Unused" ; gSourceFilePath ; gDestFilePath)]
This will copy the source file to the path indicated in the gDestFilePath.

23

TrFile_CopyFolder

Syntax TrFile_CopyFolder(switches ; sourceFolderSpec ; destinationFolderSpec)
Copies a folder to the specified folder path.

Parameters
switches reserved for future use, leave empty or set to "-Unused"
sourceFolderSpec the Filespec or path to the folder to copy
destinationFolderSpec the Filespec or path where the folder must be copied to

Returned result
The returned result is an error code. An error always starts with 2 dollars, followed by the error code. You should always
check for errors. Returned error codes can be:
0 no error The folder was copied
$$-43 fnfErr Source folder not found, or parent folder of destination folder does not exist
$$-48 dupFNErr Destination folder already exists
$$-1234 The destination is inside the source
$$-1407 The source is not a folder
Other errors may be returned.

Special considerations
NEW you can use FileMaker styled paths now, like "filewin:/C:/dir/subdir".
Use the TrFile_DeleteFolder to delete the destination folder first if it exists.

Example usage
Assume your C disk already contains a folder "TestFolder" and a folder "MyFiles". We assume that a global number field
gErrorCode is defined. In ScriptMaker create the following script:
 Set Field[gErrorCode, TrFile_CopyFolder("-Unused" ; "C:\TestFolder" ; "C:\MyFiles\CopiedFolder")]
This script will copy the folder"TestFolder" and its contents to the "CopiedFolder" file inside the folder "MyFiles" on the
C: disk. On Mac OS X the paths will be of the form "Mac HD:MyFiles:CopiedFolder".
Notice that the destination folder has been renamed too.

Example 2
We assume that in your FileMaker file the following fields are defined:
 gSourceFolderPath Global, text gErrorCode Global, number
 gDestFolderPath Global, text
gSourceFolderPath should contain the path to an existing folder, for example "D:\Logs\" (Windows) or "Mac HD:
Logs:" (Mac). gDestFolderPath should contain the path to the destination and should not exist, for example "D:
\Logs\L2007_12" (Windows) or "Mac HD:Logs:Log 2007_12" (Mac). In ScriptMaker add the following script step:
 Set Field[gErrorCode, TrFile_CopyFile("-Unused" ; gSourceFolderPath ; gDestFolderPath)]
This will copy the source folder to the path indicated in the gDestFolderPath.

24

TrFile_CreateFile

Syntax TrFile_CreateFile(switches ; FilePath)
Creates a new empty file in the location indicated by the FileSpec. This function requires no user intervention.

Parameters
switches reserved for future use, leave empty or set to "-Unused"
FilePath the path or Filespec to the file to create

Returned result
The returned result is an error code. An error always starts with 2 dollars, followed by the error code. You should always
check for errors. Returned error codes can be:

0 no error The file was created
$$-48 dupFNErr Destination file already exists
$$-1 genericErr The file could not created

Other errors may be returned.

Special considerations
NEW you can use FileMaker styled paths, like "filewin:/C:/MyFiles/test.txt".
See also the function TrFile_SaveFileDialog to get a filepath for the file.

Example usage
Set Field[gErrorCode, TrFile_CreateFile("-Unused" ; "C:\Testtext.txt")]
This will create the empty file "Testtext.txt" on the C disk.

Example 2
We assume that in your FileMaker file the following fields are defined:
 gErrorCode Global, number
 gDestFilePath Global, text
gDestFilePath should contain the path to the destination and should not exist, for example "D:\Logs\L2000_01.
TXT" (Windows) or "Mac HD:Logs:Log 2000_01" (Mac). In ScriptMaker add the following scriptstep:
 Set Field[gErrorCode, TrFile_CreateFile("-Unused" ; gDestFilePath)]
This will create the file indicated in the gDestFilePath.

25

TrFile_CreateFolder

Syntax TrFile_CreateFolder(switches ; FileSpec)
Creates a new (empty) folder (subdirectory).

Parameters
switches reserved for future use, leave empty or set to "-Unused"
FileSpec the path to the folder to create

Returned result
The returned result is an error code. An error always starts with 2 dollars, followed by the error code. You should always
check for errors. Returned error codes can be:

0 no error The folder was created
$$-48 dupFNErr Destination folder already exists
$$-1 genericErr The folder could not be created
$$-50 paramErr Parameter error

Other errors may be returned.

Special considerations
NEW you can use FileMaker styled paths now, like "filemac:/MacHD/folder/subfolder".
See also the functions: TrFile_SaveFileDialog to get a FileSpec for a folder, and TrFile_CreateFile to create a new empty
file.
v6.0 improved the TrFile_CreateFolder function: you can now specify a path and the plug-in will create the folder,
including all folders in the path that do not exist.

Example usage
We assume that a global number field gErrorCode is defined. In ScriptMaker create the following script:
 Set Field[gErrorCode, TrFile_CreateFolder("-Unused" ; "C:\Data\NewFolder")]
This script will create the folder "NewFolder" inside the Data folder on the C disk.
On Mac OS this will be:
 Set Field[gErrorCode, TrFile_CreateFolder("-Unused" ; "MyDisk:Data:NewFolder")]

Example 2
We assume that in your FileMaker file the following fields are defined:
 gErrorCode Global, number
 gFolderPath Global, text
gFolderPath should contain the path to the folder to be created and should not exist, for example "D:
\Logs\Data" (Windows) or "Mac HD:Logs:Data" (Mac OS). In ScriptMaker add the following scriptstep:
 Set Field[gErrorCode, TrFile_CreateFolder("-Unused" ; gFolderPath)]
This will create the folder specified in the gFolderPath.

26

TrFile_CreateThumbnail

Syntax TrFile_CreateThumbnail(switches ; FileSpec)
Creates a thumbnail (a small image of normally 80x80 pixels) from a graphics file and returns it.

Parameters
switches these determine the properties of the thumbnail that is returned
FilePath the path or Filespec to the file from which to create a thumbnail
Switches can be empty or one or more of the following:
-NoDialog don't show a progress dialog
-Size=80 (default) maximum size of the height or width is 80 pixels
-Size=128 maximum size of the height or width is 128 pixels
-Size=256 maximum size of the height or width is 256 pixels, more like a preview =)
-BitDepth=8 use 8 bits (=256 colors) instead of 16 bits (=65536 colors)
-BitDepth=32 use 32 bits instead of 16 bits
You can also add this new switches:
-AllowAllThumbnailSizes this will make it possible to use ANY size for the -Size switch. Use with care
-AntiAliasThumbnail creates bicubic antialiased thumbnails
-Square create square thumbnails (the extending parts of the wider side of the image are cropped)

Returned result
The returned result is the thumbnail itself. If it an error occurs an error code is returned. An error always starts with 2
dollars, followed by the error code. You should always check for errors. Returned error codes can be:

$$-2020 movieToolboxUninitialized QuickTime not available
$$-2003 cantFindHandler No thumbnail could be created

Other errors may be returned.

Special considerations
The new "-Square" switch will create square thumbnails. In this case the thumbnails will have the extending parts of the
wider side of the image cropped (thus showing the middle square of the image). Also note that the image will be scaled
proportionally up to a square, if one of the sides of the image is smaller than the requested size. This makes sure the result
is always a square with the exact dimensions requested.
starting with v5.0: you can use FileMaker styled paths now, like "imagemac:/MacHD/folder/myImage.jpg".
An error code $$-2003 is returned when you try to create a thumbnail for a file that has no graphics, for example a text file
or a spreadsheet. It is no problem if you don't know if a file has a thumbnail. Just try to create a thumbnail, if you get the
error $$-2003 you know it is not possible.
You need to have QuickTime installed in order to view the pictures in the database!

Example usage
 Set Field [container field, TrFile_CreateThumbnail("-Unused" ; "Mac HD:photo.jpeg")]
This will create a thumbnail and put it in a container field.

Example 2
Say you want to create the thumbnails of filepaths that are stored in a set of records. We assume that in your FileMaker file
the following fields are defined:
 gErrorCode Global, number
 filePath text, contains the path to a file
 thumbnailField container
filePath should contain the full path to existing files, for example "Mac HD:Aap.JPG" (Mac). In ScriptMaker add the

27

TrFile_CreateThumbnail
following script steps:
 Go to Record[first]
 Loop
 Set Field[thumbnailField , TrFile_CreateThumbnail("-Unused" ; filePath)]
 Set Field[gErrorCode , GetAsText(thumbnailField)]
 Exit Loop If[Left(gErrorCode ; 2) = "$$")]
 Go to Record[next, exit after last]
 End Loop
This will try to create thumbnails for all files for the records of the found set.

28

TrFile_DeleteFile

Syntax TrFile_DeleteFile(switches ; FileSpec)
Deletes the file indicated by the FileSpec. This function requires no user intervention.

Parameters
switches reserved for future use, leave empty or set to "-Unused"
FileSpec the Filespec or path to the file to delete

Returned result
The returned result is an error code. An error always starts with 2 dollars, followed by the error code. You should always
check for errors. Returned error codes can be:

0 no error The file was deleted
$$-43 fnfErr The file was not found
$$-47 fBsyErr The file is in use
$$-1 genericErr The file could not be deleted

Other errors may be returned.

Special considerations
WARNING: The file is not moved to the Trash, but deleted completely. This can not be undone!
See also the Dial_Dialog function (of the Troi Dialog plug-in) or use the "Show Message" script step if you want to warn
the user.
NEW you can use FileMaker styled paths, like "filewin:/C:/MyFiles/test.txt".

Example usage
Assume your C disk already contains a file "TestFile.xls". We assume that a global number field gErrorCode is defined. In
ScriptMaker create the following script:
 Set Field[gErrorCode, TrFile_DeleteFile("-Unused" ; "C:\TestFile.xls")]
This script will delete the file "TestFile.xls". On Mac OS the path will be of the form "Mac HD:TestFile.xls".

Example 2
We assume that in your FileMaker file the following fields are defined:
 gErrorCode Global, number
 gFilePath Global, text
gFilePath should contain the path to an existing file which you want to delete, for example "D:\Logs\Log01.
TXT" (Windows) or "Mac HD:Logs:Log 1" (Mac). In ScriptMaker add the following scriptstep:
 Set Field[gErrorCode, TrFile_DeleteFile("-Unused" ; gFilePath)]
This will delete the file from the disk.

29

TrFile_DeleteFolder

Syntax TrFile_DeleteFolder(switches ; FolderSpec)
Deletes the folder indicated by the FolderSpec.

Parameters
switches determines which folders are deleted
FolderSpec the FolderSpec or path to the folder to delete
Switches can be empty or this:
-DeleteAllSubFoldersAndAllContents delete all sub folders and also the contents of those folders.

Returned result
The returned result is an error code. An error always starts with 2 dollars, followed by the error code. You should always
check for errors. Returned error codes can be:

0 no error The folder was deleted
$$-1 user CANCELED
$$-37 bdNamErr Bad name in the file system
$$-47 fBsyErr File is busy, can't delete because it is not empty
$$-50 paramErr Parameter error, check if the supplied parameters are correct.
$$-120 dirNFErr Directory not found,is not a directory or is a file

Other errors may be returned.

Special considerations
WARNING This is a powerful feature. Be careful what you do! Note also that the folder is not moved to the Trash, but
deleted completely. This can not be undone!
See also Dial_Dialog function (of the Troi Dialog plug-in) or use the "Show Message" script step if you want to warn the
user.
NEW you can use FileMaker styled paths, like "filemac:/MacHD/folder/subfolder".

Example usage
Assume your C disk already contains a folder "TestFold". We assume that a global number field gErrorCode is defined. In
ScriptMaker create the following script:
 Set Field[result, TrFile_DeleteFolder("-Unused " ; " C:\TestFold\")]
This script will delete the folder "TestFold". On Mac OS the path will be of the form "Mac HD:TestFold:".

Example 2
We assume that in your FileMaker file the following fields are defined:
 gErrorCode Global, number
 gFolderPath Global, text
gFolderPath should contain the path to an existing file which you want to delete, for example "D:\Logs\" (Windows) or
"Mac HD:Logs:" (Mac). In ScriptMaker add the following scriptstep:
 Set Field[gErrorCode, TrFile_DeleteFolder("-DeleteAllSubFoldersAndAllContents" ; gFolderPath)]
This will delete the folder from the disk, including contents, like files and folders. The user is always given a warning. If
you don't use this switch only empty folders are deleted.

30

TrFile_DiskInfo

Syntax TrFile_DiskInfo(switches ; diskname)
Retrieves information about a specified disk, like the number of files.

Parameters
switches this determines which information is returned
diskname the name of the disk
Switches are different for each platform. For all platforms the switch can be one of this:
-GetIsNetworkDisk returns 1 if it is a remote network disk or 0 if not.
-GetFreeMegs get the number of free Mega bytes (Mb) on this disk
-GetTotalMegs get the size of this disk in Mega bytes (Mb)
Switches are different for each platform. For Mac OS the switch can be one of this:
-GetFileCount get the number of files on this disk
-GetFolderCount get the number of folders on this disk
For Windows the switch can be one of this:
-GetVolumeLabel get the label of the disk, for example "C Disk"
-GetVolumeSerialNumber get the serialnumber of the disk, for example "123234"
-GetUniversalName get the Universal Name of a shared network drive
-GetDriveLetter get the drive letter from an Universal Name of a shared network drive

Returned result
The returned result is a number or an error code. An error always starts with 2 dollars, followed by the error code. You
should always check for errors. Returned error codes can be:

$$-35 nsvErr No such volume, disk not found
$$-50 paramErr Parameter error, check if the supplied parameters are correct
$$2250 Not connected to a network

Other errors may be returned.

Special considerations
The switches -GetUniversalName and -GetDriveLetter are available in the 2.5x2 version or later on Windows only.

Example usage
Set Field[result, TrFile_DiskInfo(" -GetTotalMegs" ; "C:")]
Set Field[result, TrFile_DiskInfo(" -GetFreeMegs" ; "Server1")]
Set Field[result, TrFile_DiskInfo(" -GetFileCount " ; "Mac HD")]
These steps will return the total and the free number of Mb of the disk. The last step will return the number of files for of
the disk "Mac HD". Note this is available on Mac OS only.
Set Field[result , TrFile_DiskInfo(" -GetVolumeSerialNumber " ; "C:)]
This will return the serialnumber of the hard disk C. Note this is available on Windows only.

Example 2
We assume that in your FileMaker file the following fields are defined:
 gFolderCount Global, number
 gDiskName Global, text
gDiskName should contain the name of a hard disk. In ScriptMaker add the following script step:

31

TrFile_DiskInfo
Set Field[gFolderCount, TrFile_DiskInfo(" -GetFolderCount " ; " _gDiskName)]
This will return the number of folders on the disk.

Example 3
This example describes how to work with UNC's, which are only available on Windows. We assume that in your
FileMaker file the following fields are defined:
 gFolderCount Global, number
 gDiskName Global, text
 gUNC_Name Global, text
gDiskName should contain the name of a remote hard disk, for example "Z:". In ScriptMaker add the following script
steps:
Set Field[gUNC_Name, TrFile_DiskInfo(" -GetUniversalName " ; gDiskName)]
This will return the UNC, for example "\\Server3\\SharedDocs". If you want do the reverse add this step:
Set Field[gDiskName, TrFile_DiskInfo(" -GetDriveLetter " ; " gUNC_Name)]
To mount a shared hard disk with a UNC see the function TrFile_MountDisk.

32

TrFile_DragAndDrop

Syntax TrFile_DragAndDrop(switches ; fileName ; scriptName ; { fieldBounds })
This function implements drag and drop of files and folders onto a FileMaker window.

Parameters
switches determine the behaviour of the function
fileName the name of the file that contains the script to be triggered
scriptName the name of the script to be triggered when files/folders are dropped on a window
fieldBounds (optional) a rectangle on the layout where the drag is accepted. Dimensions (in pixels) are in this
order: "left top right bottom", which is the same order as the FileMaker FieldBounds function returns
switches can be one of this:
-AddDragAndDropHandler the plug-in starts accepting drag and drop. You can now drag files on the window
-StopDragAndDrop the plug-in no longer accepts drag and drop
You can also add one of these switches
-LinkCursor (default) while dragging show an arrow cursor with a small link symbol
-CopyCursor while dragging show arrow cursor with a small plus symbol
These 2 switches only change how the cursor looks. In the triggered script you need to implement any action
you want to perform on the dragged items.

Returned result
The returned result is an error code. An error always starts with 2 dollars, followed by the error code. You should always
check for errors. Returned error codes can be:
0 no error
$$-50 paramErr there was an error with a parameter
$$-5600 errInvalidWindowRef the window could not be found
$$-4223 errTooManyEvents you have specified more than 2 D&D handlers
Other errors may be returned.

Special considerations
NEW you can now specify two separate drag destinations, by calling the function twice with the switch -
AddDragAndDropHandler with the 2 rectangles you want as drop zones.
The FileMaker window that is in front when the "-AddDragAndDropHandler" switch is executed, will be activated as the
destination of future drags.
When the plug-in detects a drag on the destination window, the specified script will be triggered. The (incoming)
ScriptParameter of the triggered script will contain the list of files/folders that were dragged on the window.
You can drag one or more files and folders (or a mix of this) on the window. The trigger script should be expecting this
and be capable to handle this, for example in a loop. Alternatively the script can only use the first file in the list.
See the new switch "-PackageFolderAttr" in the function TrFile_GetFileAttribute: this can be used to determine if a result
of the drag and drop action is a package.
KNOWN ISSUES
- The plug-in is not aware if the position of the custom fieldbounds is changed, for example when scrolled.
- (Mac OS X) the drop box highlight is only visible over a white background.
- (Mac OS X) the link and copy cursor is visible only when moving the cursor.

Example usage
To make drag and drop work you need a trigger script that handles the drag. Also you need to start and stop the plug-in

33

TrFile_DragAndDrop
handling the drags. We here create a (simplified) script that will put the path of first file found in a field. See the example
files for a more extensive script handling more files and container fields.
- Create a script named "DragTriggerscript":
 Set Variable [$pathList; Value:Get (ScriptParameter)]
 If [Get (FoundCount) = 0]
 New Record/Request
 End If
 Set Variable [$returnPos; Value:Position($pathList; "¶" ; 1 ; 1)]
 Set Field [this::onepath; Value:If($returnPos > 0 ; Left($pathList ; $returnPos - 1) ; $pathList)]
 ## here you can add actions you want to perform on this file
- Starting drag and drop can be done like this:
 Set Field[gErrorCode, TrFile_DragAndDrop("-AddDragAndDropHandler " ; Get(FileName) ; "DragTriggerscript"))]
After this step has been executed the user can drag files on the window and the DragTriggerScript will be run.
- Stopping drag and drop can be done like this:
 Set Field[gErrorCode, TrFile_DragAndDrop("-StopDragAndDrop " ; "" ; ""))]

Example 2
Set Variable[$containerFieldBounds, FieldBounds (Get(FileName) ; Get (LayoutName) ; Get (ActiveFieldName))]
Set Variable[$result, TrFile_DragAndDrop("-AddDragAndDropHandler" ; Get(FileName) ; "DragTriggerscript" ;
$containerFieldBounds)]
This will make the drag area around a container field. It works in FileMaker 10. In previous versions of FileMaker you
need to correct for the status area on the left. See the scripts in the example file DragAndDrop.fp7 for this.

34

TrFile_ExecuteShell

Syntax TrFile_ExecuteShell(switches ; shellCommand)
Execute a command in the (UNIX or Windows) shell of the operating system

Parameters
switches these alter the behaviour of the function
shellCommand the command to be executed
Switches can be empty or one of this:
-TimeoutSecs=x specify the timeout time in x seconds (default = 20 seconds)
-DontWaitOnResult execute the shell command without waiting on a result
-ShowCommandWindow (Windows only) show the command window where the shell is running
-WaitAfterExitTicks=x (Windows only) wait x ticks (= 1/60th of a sec) after the command finishes
-Encoding=Native (default) uses the native encoding for the command
-Encoding=ASCII_DOS use OEM DOS ASCII for the higher ASCII's 128-255
-Encoding=ASCII_Windows use Ansi Windows ASCII for the higher ASCII's 128-255
-Encoding=ASCII_Mac use Mac ASCII for the higher ASCII's 128-255 (as used in fmp 6)

Returned result
The result of the shell command or an errorcode
If an error occurs it will start with 2 dollars, followed by the error code. You should always check for errors. Returned error
codes can be:

$$-4218 kErrCanNotEnable can not start a shell.
$$-4230 timeout error.

Other errors may be returned.

Special considerations
This is a powerful function, with which you can accomplish multiple commands. Please read about the shell command in
Unix or Windows before using this.
For Windows: to be able to use spaces and quotes in the command wrap the whole command in 2 extra double quotes, one
at the beginning and one at the end, like ""C:\testapp.exe" "test param""

Example usage
On Windows:
 Set Field[gResult, TrFile_ExecuteShell("-Unused" ; "dir C:\")]
On Mac OS X:
 Set Field[gResult, TrFile_ExecuteShell("-Unused" ; "ls /")]
This will list the contents of the root folder.

Example 2
On Windows:
 Set Field[gResult, TrFile_ExecuteShell("-TimeoutSecs=5" ; "echo testtext > C:\example.txt")]
On Mac OS X:
 Set Field[gResult, TrFile_ExecuteShell("-TimeoutSecs=5" ; "echo testtext > /example.txt")]
This will create a text file example.txt on your startup disk. If the command takes more time than 5 seconds the plug-in will
return with an timeout error $$-4230.

35

TrFile_Exists

Syntax TrFile_Exists(switches ; FileSpec)
Check for the existence of a file or folder.

Parameters
switches not used, reserved for future use. Leave blank or put "-Unused"
FileSpec the Filespec or path to the file for which you want to know if it exists

Returned result
The returned result is a boolean: The function returns 1 if the file or folder exists. If it does not exist or if an error occurs it
will return 0.

Special considerations
If the function returns 0 you should decide if it is nessarry to check for errors, for example if a file is on a disk that is not
mounted.

Example usage
Set Field[doesExists, TrFile_Exists("-Unused" ; "C:\Test.txt")]
This will return 1 if it exists.

Example 2
We assume that in your FileMaker file the following field is defined:
 gFilePath Global, text
gFilePath should contain the path to a file, for example "D:\Logs\L2000_01.TXT" (Windows) or "Mac HD:Logs:Log
2000_01" (Mac). In ScriptMaker add the following script steps:
if [TrFile_Exists("-Unused" ; gFilePath)]
 #... do your stuff here
else
 #... do your error handling here....
endif
This will make it easy to handle existing files.

36

TrFile_FileSpecToFullPath

Syntax TrFile_FileSpecToFullPath(switches ; FileSpec)
Returns full path of a file or folder from the FSSpec. Mac OS only.

Parameters
switches reserved for future use, leave empty or set to "-Unused"
FileSpec the FSSpec of a file or folder. It is of the form ":volumeID:directoryID:fileName"

Returned result
Returns a full path formatted like this:

"DiskName:foldername1:foldername2:...:foldernameN:filename"

Special considerations
•On the Mac a disk name need not be unique, be careful with that.•
•See also the function TrFile_FullPath To FileSpec" to revert the path name.•

Example usage
Set Field[result, TrFile_FileSpecToFullPath("-Unused" ; ":-1:300:testfile")]
If the FSSpec is valid this may return something like this:

"Mac HD:Data Files:Database:testfile"

Example 2
We assume that in your FileMaker file the following field is defined:
 gFilePath Global, text
gFilePath should contain the path to an existing file, for example ":-1:300:testfile". In ScriptMaker add the following
scriptstep:
 Set Field[gFilePath, TrFile_FileSpecToFullPath("-Unused" ; gFilePath)]
This will convert the FSSpec in gFilePath to a Full Path.

37

TrFile_FindFolder

Syntax TrFile_FindFolder(folderswitch)
Returns the path to special folders (subdirectories).

Parameters
folderswitch specifies the name of the wanted special folder.
Not all special folders are available for each platform. On both Mac OS and Windows you can specify:
-Desktop = desktop folder
-System = system folder
-Temporary = hidden temporary folder on the startup disk
-Root = top folder on the startup disk
-Startup = startup items folder in the system folder
On Mac OS you can also specify:
-Applemenu = apple menu folder in the system folder
-Controlpanels = control panels folder in the system folder
-Extensions = extensions folder in the system folder
-Preferences = preferences folder in the system folder
-Shutdown = shutdown items folder in the system folder
-Trash = trash folder on the desktop
On Windows you can also specify:
-Fonts = the fonts folder
-Mydocuments = the My Documents folder
-Programs = the programs folder inside the start menu
-Startmenu = the Startup items folder
-Windows = the Windows folder
On Mac OS X you can also add:
-ReturnFSSpec = the function returns the folder as a FSSpec instead of a full path.

Returned result
FileSpec The Filespec or path to the folder.
If a special folder is not available for that platform $$-1 is returned.

Special considerations
Starting with version 2.5 FindFolder is now also available on Windows.
Not every special folder is available for each platform.
Note that there is a trash folder for every volume. Currently this function returns the trash folder on the startup disk.
Some folder are no longer available on Mac OS X, and will return $$-43 (file not found).

Example usage
Set Field [result, TrFile_FindFolder("-Trash")]
This will return the full path of the Trash folder.
TIP: With this folder and the MoveFile function you can move items into the Trash. Be aware that each disk has its one
trash, so there may be more than one trash. FindFolder returns the trash of the startup disk.

Example 2

38

TrFile_FindFolder
Set Field [gStartupDiskFolder, TrFile_FindFolder("-Root")]
This will return the top folder on the startup disk, for example "C:".

39

TrFile_FullPathToFileSpec

Syntax TrFile_FullPathToFileSpec(switches ; FileSpec)
Changes the full name path to the standard Macintosh FSSpec.

Parameters
switches reserved for future use, leave empty or set to "-Unused"
FileSpec the Full path of a file or folder. It is of the form

"DiskName:foldername1:foldername2:...:foldernameN:filename"

Returned result
Returns a Mac OS FSSpec formatted like this:

":volumeID:directoryID:fileName"
This is the preferred way on the Mac to specify a file.

Special considerations
An FSSpec is recognized by the colon as the first character.
•On the Mac a disk name need not be unique, be careful with that.•

Example usage
Set Field[result, TrFile_FullPathToFileSpec("-Unused" ; "Mac HD:Data Files:Database:testfile")]
If the path is valid this may return something like this:

":-1:300:testfile"

Example 2
We assume that in your FileMaker file the following field is defined:
 gFilePath Global, text
gFilePath should contain the path to an existing file, for example "Mac HD:Data Files:Database:testfile". In ScriptMaker
add the following scriptstep:
 Set Field[gFilePath, TrFile_FullPathToFileSpec("-Unused" ; gFilePath)]
This will convert the Full Path in gFilePath to an FSSpec.

40

TrFile_GetContents

Syntax TrFile_GetContents(switches ; FileSpec ; { start ; { size }})
Returns (a part of) the contents of the file specified by the FileSpec. You can specify the starting position and the number of
characters to get.

Parameters
switches these alter the behaviour of the function
FileSpec the Filespec or path to the file
start (optional) starting position in the file (with a value of 0 returning the first character)
size (optional) the number of characters to get
Switches can be empty or one of this:
-Encoding=Native (default)
-Encoding=UTF8
-Encoding=ASCII_DOS
-Encoding=ASCII_Windows
-Encoding=ASCII_Mac
This determines the character encoding of the text to be read.
You can also add this switch:
-ConvertToFMPLinebreaks this will convert any line breaks in the data to the line break FileMaker
expects: CRLF, LF and CR will all become CR.

Returned result
The characters of the file specified.
If unsuccessful this function returns an error code starting with $$ and the error code. Possible codes are:
$$-50 = parameter error.
$$-41 = not enough memory
$$-39 = (eofErr) start is beyond the end of the file
$$-4241 = start or size parameter too big (> 2 Gb)
Other error codes might be returned.

Special considerations
IMPORTANT In contrast to the classic version 2.8 and earlier, the offset of the "start" parameter is from 0. For example a
value of 1 will return the contents from the 2nd character.
You can read up to 2 Gb into a field. However more than 500000 characters will slow down FileMaker considerably.
Only use -ConvertToFMPLinebreaks when getting text files, as it might change the data returned. If for example you use it
with an image file the imported image might get corrupted.
Up to v5.0 there was an error in the documentation: it was incorrectly stated that UTF-8 was the default encoding. The
default is -Encoding=Native, which is the current encoding as set in the system preference, for example on western
Windows systems it usually is ISO_8859_1 or ASCII_Windows.

Example usage
Set Field[MyTextField, TrFile_GetContents("-Unused" ; "HD Mac:Text files:My Letter")]
returns the contents of the file.

Example 2
We assume that in your FileMaker file the following fields are defined:
 gContents Global, text gStart Global, number
 gFileSpec Global, text gLength Global, number

41

TrFile_GetContents

gFileSpec should contain the path to an existing file, for example "D:\Readme.txt" (Windows) or "Mac HD:Readme.
txt" (Mac). In gStart should be the start position and in gLength the number of bytes you want to get. In ScriptMaker add
the following scriptstep:
 Set Field[gContents, TrFile_GetContents("-Unused" ; gFileSpec & ;gStart ; gLength)]
This will get part of the contents of the file into the gContents field.

42

TrFile_GetDataSize

Syntax TrFile_GetDataSize(switches ; FileSpec)
Returns the size of the data for the file specified by the FileSpec. The size indicates the actual number of bytes used by the
data fork.

Parameters
switches not used, reserved for future use. Leave blank or put "-Unused"
FileSpec the Filespec or path to the file

Returned result
The size (in bytes) of the data of the file specified. On Mac a file can have a data fork and also a resource fork. On Mac OS
this function returns the size of the data fork only.

Special considerations
See also the functions TrFile_GetFileSize and TrFile_GetResForkSize.
NEW you can use FileMaker styled paths, like "filewin:/C:/MyFiles/test.txt".

Example usage
Assume there is a file "Read me" with the text "Hello!" in it. Then:
 Set Field[MyTextField, TrFile_GetDataSize("-Unused" ; "Disk:Read me")]
returns 6, which is the size of the data in the file. The total file size may be bigger.

Example 2
We assume that in your FileMaker file the following fields are defined:
 gFileSpec Global, text
 gSize Global, number
gFileSpec should contain the path to an existing file, for example "D:\Readme.txt" (Windows) or "Mac HD:Readme.
txt" (Mac). In ScriptMaker add the following scriptstep:
 Set Field[gSize, TrFile_GetDataSize("-Unused" ; gFileSpec)]
This will fill gSize with the size of the data.

43

TrFile_GetDateCreated

Syntax TrFile_GetDateCreated(switches ; FileSpec)
Returns the creation date for the file specified by the FileSpec.

Parameters
switches not used, reserved for future use. Leave blank or put "-Unused"
FileSpec the Filespec or path to the file for which you want the information

Returned result
The returned result is the creation date of the file. The date is in the same format as a date field.
An error code might also be returned. An error always starts with 2 dollars, followed by the error code. Returned error
codes can be:

$$-43 fnfErr File not found, check if the path is valid
$$-1 genericErr The file could not be found (older versions of the plug-in)

Other errors may be returned.

Special considerations
NEW you can use FileMaker styled paths, like "filewin:/C:/MyFiles/test.txt".

Example usage
Set Field[creationDate, TrFile_GetDateCreated("-Unused" ; "C:\Test.txt")]
This may return the number 730172 which is equivalent to the date: 22 Feb. 2000.

Example 2
We assume that in your FileMaker file the following fields are defined:
 creationDate date
 gFilePath Global, text
gFilePath should contain the path to the file, for example "D:\Logs\L2000_01.TXT" (Windows) or "Mac HD:Logs:Log
2000_01" (Mac). In ScriptMaker add the following script step:
 Set Field[creationDate, TrFile_GetDateCreated("-Unused" ; gFilePath)]
This will store the creation date of the file specified by gFilePath in the field creationDate.

44

TrFile_GetDateLastAccessed

Syntax TrFile_GetDateLastAccessed(switches ; FileSpec)
Returns the date a file was accessed (opened) for the last time.

Parameters
switches not used, reserved for future use. Leave blank or put "-Unused"
FileSpec the Filespec or path to the file for which you want the information

Returned result
The returned result is the date the file was last accessed. The date is in the same format as a date field.
An error code might also be returned. An error always starts with 2 dollars, followed by the error code. Returned error
codes can be:

$$-43 fnfErr File not found, check if the path is valid
Other errors may be returned.

Special considerations
NEW you can use FileMaker styled paths, like "filewin:/C:/MyFiles/test.txt".

Example usage
Set Field[lastAccessedDate, TrFile_GetDateLastAccessed("-Unused" ; "C:\Test.txt")]
This may return the number 730172 which is equivalent to the date: 22 Feb. 2000.

Example 2
We assume that in your FileMaker file the following fields are defined:
 lastAccessedDate date
 gFilePath Global, text
gFilePath should contain the path to the file, for example "D:\Logs\L2000_01.TXT" (Windows) or "Mac HD:Logs:Log
2000_01" (Mac). In ScriptMaker add the following script step:
 Set Field[lastAccessedDate, TrFile_GetDateLastAccessed("-Unused" ; gFilePath)]
This will store the date the file, specified by gFilePath, was opend for the last time of the file in the field lastAccessedDate.

45

TrFile_GetDateModified

Syntax TrFile_GetDateModified(switches ; FileSpec)
Returns the modification date for the file specified by the FileSpec. The modification date is also displayed in the Finder or
Explorer.

Parameters
switches not used, reserved for future use. Leave blank or put "-Unused"
FileSpec the Filespec or path to the file for which you want the information

Returned result
The returned result is the modification date of the file. The date is in the same format as a date field.
An error code might also be returned. An error always starts with 2 dollars, followed by the error code. Returned error
codes can be:

$$-43 fnfErr File not found, check if the path is valid
$$-1 genericErr The file could not be found (older versions of the plug-in)

Other errors may be returned.

Special considerations
NEW you can use FileMaker styled paths, like "filewin:/C:/MyFiles/test.txt".

Example usage
Set Field[modificationDate, TrFile_GetDateModified("-Unused" ; "C:\Test.txt")]
This may return the number 730173 which is equivalent to the date: 23 Feb. 2000.

Example 2
We assume that in your FileMaker file the following fields are defined:
 modificationDate date
 gFilePath Global, text
gFilePath should contain the path to the file, for example "D:\Logs\L2000_01.TXT" (Windows) or "Mac HD:Logs:Log
2000_01" (Mac). In ScriptMaker add the following script step:
 Set Field[modificationDate, TrFile_GetDateModified("-Unused" ; gFilePath)]
This will store the modification date of the file specified by gFilePath in the field modificationDate.

46

TrFile_GetFileAttribute

Syntax TrFile_GetFileAttribute(switches ; FileSpec)
Returns an attribute of the file specified by the FileSpec.

Parameters
switches this determines the attribute that is returned
FileSpec the FileSpec or path to the file
switches can be one of the following:
-LockAttr return number indicating whether the file is locked (Mac) or Read-only (Windows)
-HiddenAttr return number indicating whether the file is hidden (invisible)
-ArchiveAttr return number indicating whether the file's archive bit is set (Windows only)
-LabelNumAttr return number indicating the label of a file (Mac OS only)
-FindercommentAttr return the finder comment of a file (Mac OS only)
-PackageFolderAttr return number indicating whether the file is a package folder (Mac OS only)

Returned result
The returned result is the requested attribute of the file.
Result for switch "-LockAttr":
Returns 1 for a locked file and 0 for an unlocked file. On Windows it returns the equivalent "Read-only"-attribute: 1 if the
file is a Read-only file and 0 otherwise.
Result for switch "-HiddenAttr":
Returns 1 if the file is hidden and 0 otherwise.
Result for switch "-ArchiveAttr":
Returns 1 if the file's archive bit is set and 0 otherwise. This bit is only available on Windows. On Mac OS this switch
always returns 0.
Result for switch "-LabelNumAttr":
Returns a number between 0 (=no label) and 7. This attribute is only available on Mac OS. On Windows this switch always
returns 0.
Result for switch "-FindercommentAttr":
Returns the finder comment, which is visible with the Get Info command in the Mac OS Finder. On Windows this switch
always returns "".
Result for switch "-PackageFolderAttr":
Returns 1 if the item is a package folder and 0 otherwise. For example all Mac OS X applications are package folders. This
attribute is only available on Mac OS. On Windows this switch always returns 0.

Note that also an error code might be returned. An error always starts with 2 dollars, followed by the error code. Returned
error codes can be:

$$-43 fnfErr File not found, check if the path is valid
$$-1 genericErr The file could not be found (older versions of the plug-in)

Other errors may be returned.

Special considerations
The new switch "-PackageFolderAttr" can be used to determine if a result of the drag and drop action is a package.
NEW you can use FileMaker styled paths, like "filewin:/C:/MyFiles/test.txt".

Example usage
 Set Field[result, TrFile_GetFileAttribute("-LockAttr" ; "C:\test.doc")]

47

TrFile_GetFileAttribute
The result will be 1 if the file is Read-Only and 0 otherwise.

Example 2
We assume that in your FileMaker file the following fields are defined:
 locked text
 fileSpec text
"fileSpec" should contain the path to an existing file, for example "D:\Out.txt" (Windows) or "Mac HD:Out.txt" (Mac). In
ScriptMaker add the following script step:
 Set Field[locked, TrFile_GetFileAttribute("-LockAttr" ; fileSpec)]
This will get the locked status of the file into the field "locked".

48

TrFile_GetFileCreator

Syntax TrFile_GetFileCreator(switches ; FileSpec)
Returns the Creator for the file specified by the FileSpec.

Parameters
switches not used, reserved for future use. Leave blank or put "-Unused"
FileSpec the Filespec or path to the file for which you want the information

Returned result
Creator: The Creator of a file is a 4 character code used to designate the application that created a file. For example:
FileMaker Pro 7 creates database files with a Creator "FMP7".

Special considerations
•This function is not available in Windows.•
See also the function "TrFile-GetFileType" to get the FileType.
If the creator is empty the function returns: "0000" (4 zero's) .

Example usage
Set Field[result, TrFile_GetFileCreator("-Unused" ; "KES:readme")]
This will (probably) return "ttxt" which is the Creator for the SimpleText application.

Example 2
We assume that in your FileMaker file the following fields are defined:
 creator text
 gFilePath Global, text
gFilePath should contain the path to the file, for example "Mac HD:Logs:Log 1" (Mac). In ScriptMaker add the following
script step:
 Set Field[creator, TrFile_GetFileCreator("-Unused" ; gFilePath)]
This will store the Creator of the file specified by gFilePath in the field "creator".

49

TrFile_GetFileHash

Syntax TrFile_GetFileHash(switches ; FileSpec)
Returns the MD5 hash value (checksum) of a file.

Parameters
switches determines the behaviour of the function
FileSpec the Filespec or path to the file of which you want the hash value
Switches must currently be:
-MD5 use the MD5 algorithm to calculate the hash.
You can also add this switch below:
-Colons add colons between the result, for easy human reading

Returned result
the hash value, which is a text of 32 characters.
If the file does not exist or if an error occurs an error code will be returned, starting with $$:
 $$-43 fnfErr File or folder not found
 $$-50 paramErr Parameter error
Other error codes may be returned.

Special considerations
The function result is also called a message-digest. It provides an easy way to check if a file has not changed (by comparing
it to a stored MD5 hash). Also you can use this hash to check if two files are identical.
Note: On Mac OS X only the data fork is considered. The resource fork of a file is ignored.

Example usage
TrFile_GetFileHash("-MD5" ; "C:\Test.txt")]
This will return the hash value which looks like this: "6858c159c8ed6c5957fdf344e3367495"

Example 2
Set Variable [$hash ; TrFile_GetFileHash("-MD5 -Colons" ; "filemac:/Mac HD/Users/Smith/report.txt")]
This will set the variable $hash to the MD5 hash value of the file. The result will be formatted, for easier reading, with
colons between each byte and looks similar to this:
"65:da:d9:97:46:2d:21:95:a7:4e:e8:a1:fd:5f:3c:ed"

50

TrFile_GetFileSize

Syntax TrFile_GetFileSize(switches ; FileSpec)
Returns the file size for the file specified by the FileSpec. The size indicates the size the file is using on the disk, not the
actual size of the data and resources.

Parameters
switches not used, reserved for future use. Leave blank or put "-Unused"
FileSpec the Filespec or path to the file for which you want the information

Returned result
The size (in number of bytes) of the file on disk.

Special considerations
NEW you can use FileMaker styled paths, like "filewin:/C:/MyFiles/test.txt".

Example usage
Assume there is a file "Read me" with the text "Hello!" in it. Then:
 Set Field[MyTextField, TrFile_GetFileSize("-Unused" ; "Disk:Read me")]
returns 1024 (= 1 Kb) which is the size used on disk.

Example 2
We assume that in your FileMaker file the following fields are defined:
 gFileSpec Global, text
 gSize Global, number
gFileSpec should contain the path to an existing file, for example "D:\Readme.txt" (Windows) or "Mac HD:Readme.
txt" (Mac). In ScriptMaker add the following scriptstep:
 Set Field[gSize, TrFile_GetFileSize("-Unused" ; gFileSpec)]
This will fill gSize with the total size of the file.

51

TrFile_GetFileType

Syntax TrFile_GetFileType(switches ; FileSpec)
Returns the FileType for the file specified by the FileSpec.

Parameters
switches not used, reserved for future use. Leave blank or put "-Unused"
FileSpec the Filespec or path to the file for which you want the information

Returned result
The FileType is a 4 character code used to designate the type of file. For example: FileMaker 7 files have a FileType of
"FMP7" and Applications have FileType of "APPL".

Special considerations
This function is not available in Windows. Windows uses the 3 letter extension, like .fp7 instead.
If the file type is empty the function returns: "0000" (4 zero's) .
NEW you can use FileMaker styled paths, like "filewin:/C:/MyFiles/test.txt".

Example usage
Set Field[result, TrFile_GetFileType("-Unused" ; "KES:test.fp7")]
This will (probably) return "FMP7" which is the FileType for FileMaker Pro 7.

Example 2
We assume that in your FileMaker file the following fields are defined:
 fileType text
 gFilePath Global, text
gFilePath should contain the path to the file, for example "Mac HD:Logs:Log 1" (Mac). In ScriptMaker add the following
script step:
 Set Field[fileType, TrFile_GetFileType("-Unused" ; gFilePath)]
This will store the FileType of the file specified by gFilePath in the field "fileType".

52

TrFile_GetPathTo

Syntax TrFile_GetPathTo(switches ; desiredFilename ; fileSize)
Returns the path to an object, at the moment the path to the FileMaker application or the current FileMaker file.

Parameters
switches this determines which path is returned
desiredFilename the name of the file to find
fileSize the size of the file to find
switch can be only the following:
-CurrentApplication return the FileSpec of the FileMaker application
-CurrentFileName return the FileSpec of the FileMaker file that is currently active (the front window)
-CurrentAppFolder return the folder of the current running (FileMaker) application.

Returned result
FileSpec: The function returns a FileSpec for the current database file.
The function can also return an error code. An error always starts with 2 dollars, followed by the error code. You should
always check for errors. Returned error codes can be:

$$-43 fnfErr File not found.
$$-50 paramErr There was an error with the parameter.
$$-4215 invalidFMPVersion This function does not work with this version

Other errors may be returned.

Special considerations
The -CurrentApplication switch of this function works on all platforms and also with a runtime.
The -CurrentFileName switch of this function works on Windows from FileMaker version 5. On Mac OS it works from
FileMaker 4.0 and later. If you use it on Windows under a version earlier than FileMaker 5 an error code "$$
-4215" (kErrInvalidFMPVersion) is returned.
IMPORTANT: When creating a runtime with FileMaker Developer on Windows the -CurrentFileName function does NOT
work on Windows NT, Windows 2000 and Windows XP. It works with runtimes on Mac OS and Windows 95/98/Me.
Also when a file is hosted as a guest, for example with FileMaker Server it can not return the path, in this case it will return
an error code "$$-43" (fnfErr = file not found).
NOTE FileMaker Pro 5.5 has a Status(CurrentFilePath) function, that also returns a path to the file. For FileMaker 7 and
later this function is called: Get(FilePath)
The switch -CurrentAppFolder returns the folder of the current running application. This is for example the folder of the
FileMaker Pro application or the folder of the FileMaker runtime application.
IMPORTANT (Mac OS X only) Version 2.7 changed the behaviour of the switch "-CurrentApplication". This function
now returns the FSSpec to the FileMaker application package (usually FileMaker Pro.app), instead of the carbon executable
inside this package.
So the full path will no longer be:
 "MacHD:Applications:FileMaker Pro 6 Folder:FileMaker Pro.app:Contents:MacOS:FileMaker Pro"
Instead it will be:
 "MacHD:Applications:FileMaker Pro 6 Folder:FileMaker Pro.app:"
Be aware that the FSSpec of this package is a folder! This may break a script if you assumed the "Contents:MacOS:
FileMaker Pro" was at the end. If you only want to find the folder of the FileMaker application use the new switch "-
CurrentAppFolder".
"-CurrentAppFolder" will return the path with a backslash (Windows).

53

TrFile_GetPathTo

Example usage
Set Field [result, TrFile_GetPathTo("-CurrentApplication")]
This will get the path to the current FileMaker application. An example result can be on Mac "MyDisk:Applications (Mac
OS 9):FileMaker Pro 5.5 Folder:FileMaker Pro". On Windows this might be: "C:\Program Files\FileMaker\FileMaker Pro
5.5 Folder\FileMaker Pro.exe"

Example 2
Set Field [result, TrFile_GetPathTo(
 "-CurrentFileName" ; Get(FileName) ; Get(FileSize))]
This will get the path to the current FileMaker file that is open. An example result can be on Mac "MyDisk:Documents:test.
fp7". On Windows this might be: "D:\Documents\test.fp7"

54

TrFile_GetResForkSize

Syntax TrFile_GetResForkSize(switches ; FileSpec)
Returns the size of the resource fork for the file specified by the FileSpec. The size indicates the actual number of bytes
used by the resource fork.

Parameters
switches not used, reserved for future use. Leave blank or put "-Unused"
FileSpec the Filespec or path to the file for which you want the information

Returned result
The size (in bytes) of the resource fork of the file specified. On Mac a file can have a data fork and also a resource fork. In
this fork resources, like for example pictures are stored.

Special considerations
This function is not available in Windows.

Example usage
Assume there is a file "Read me.txt" with the text "Hello!" in it. Then:
 Set Field[MyTextField, TrFile_GetResForkSize("-Unused" ; "Disk:Read me.txt")]
might return 453 which is the size of the resource fork.

Example 2
We assume that in your FileMaker file the following fields are defined:
 gFileSpec Global, text
 gSize Global, number
gFileSpec should contain the path to an existing file, for example "Mac HD:Readme.txt". In ScriptMaker add the following
scriptstep:
 Set Field[gSize, TrFile_GetResForkSize("-Unused" ; gFileSpec)]
This will fill gSize with the resource fork size of the file.

55

TrFile_GetTimeCreated

Syntax TrFile_GetTimeCreated(switches ; FileSpec)
Returns the creation time for the file specified by the FileSpec.

Parameters
switches not used, reserved for future use. Leave blank or put "-Unused"
FileSpec the Filespec or path to the file for which you want the information

Returned result
The returned result is the creation time of the file. The time is in the same format as a time field (number of seconds since
00:00:00).
An error code might also be returned. An error always starts with 2 dollars, followed by the error code. Returned error
codes can be:

$$-43 fnfErr File not found, check if the path is valid
$$-1 genericErr The file could not be found (older versions of the plug-in)

Other errors may be returned.

Special considerations
NEW you can use FileMaker styled paths, like "filewin:/C:/MyFiles/test.txt".

Example usage
Set Field[creationTime, TrFile_GetTimeCreated("-Unused" ; "C:\Test.txt")]
This might return the number 7264 which is equivalent to the time: 02:01:04.

Example 2
We assume that in your FileMaker file the following fields are defined:
 creationTime time
 gFilePath Global, text
gFilePath should contain the path to the file for example "D:\Logs\L01.TXT" (Windows) or "Mac HD:Logs:Log 1" (Mac).
In ScriptMaker add the following script step:
 Set Field[creationTime, TrFile_GetTimeCreated("-Unused" ; gFilePath)]
This will store the creation time of the file specified by gFilePath in the field creationTime.

56

TrFile_GetTimeLastAccessed

Syntax TrFile_GetTimeLastAccessed(switches ; FileSpec)
Returns the time a file was accessed (opened) for the last time.

Parameters
switches not used, reserved for future use. Leave blank or put "-Unused"
FileSpec the Filespec or path to the file for which you want the information

Returned result
The returned result is the time the file was last accessed. The time is in the same format as a time field (number of seconds
since 00:00:00).
An error code might also be returned. An error always starts with 2 dollars, followed by the error code. Returned error
codes can be:

$$-43 fnfErr File not found, check if the path is valid
$$-1 genericErr The file could not be found (older versions of the plug-in)

Other errors may be returned.

Special considerations
On Windows some file systems (FAT) only store the actual Date of the last access. The time in this case will be 00:00:00.
See the TrFile_GetDateLastAccessed in this case.

Example usage
Set Field[lastAccessedTime, TrFile_GetTimeLastAccessed("-Unused" ; "C:\Test.txt")]
This might return the number 7264 which is equivalent to the time: 02:01:04.

Example 2
We assume that in your FileMaker file the following fields are defined:
 lastAccessedTime time
 gFilePath Global, text
gFilePath should contain the path to the file for example "D:\Logs\L01.TXT" (Windows) or "Mac HD:Logs:Log 1" (Mac).
In ScriptMaker add the following script step:
 Set Field[lastAccessedTime, TrFile_GetTimeLastAccessed("-Unused" ; gFilePath)]
This will store the time the file, specified by gFilePath, was openend for the last time of the file in the field
lastAccessedTime.

57

TrFile_GetTimeModified

Syntax TrFile_GetTimeModified(switches ; FileSpec)
Returns the modification time for the file specified by the FileSpec. The modification time is also displayed in the Finder or
Explorer.

Parameters
switches not used, reserved for future use. Leave blank or put "-Unused"
FileSpec the Filespec or path to the file for which you want the information

Returned result
The returned result is the modification time of the file. The time is in the same format as a time field (number of seconds
since 00:00:00).
An error code may also be returned. An error always starts with 2 dollars, followed by the error code. Returned error codes
can be:

$$-43 fnfErr File not found, check if the path is valid
$$-1 genericErr The file could not be found (older versions of the plug-in)

Other errors may be returned.

Special considerations
NEW you can use FileMaker styled paths, like "filewin:/C:/MyFiles/test.txt".

Example usage
Set Field[modificationTime, TrFile_GetTimeModified("C:\Test.txt")]
This might return the number 7265 which is equivalent to the time: 02:01:05.

Example 2
We assume that in your FileMaker file the following fields are defined:
 modificationTime time
 gFilePath Global, text
gFilePath should contain the path to the file, for example "D:\Logs\L01.TXT" (Windows) or "Mac HD:Logs:Log 1" (Mac).
In ScriptMaker add the following script step:
 Set Field[modificationTime, TrFile_GetTimeModified(gFilePath)]
This will store the modification time of the file specified by gFilePath in the field modificationTime.

58

TrFile_GetTimestampCreated

Syntax TrFile_GetTimestampCreated(switches ; FileSpec)
Returns the creation date and time for the file specified by the FileSpec.

Parameters
switches not used, reserved for future use. Leave blank or put "-Unused"
FileSpec the Filespec or path to the file for which you want the information

Returned result
The returned result is the creation date and time of the file. The result is formatted like this:
YYYY-MM-DD HH:MM:SS. Store the result in a text field.
An error code might also be returned. An error always starts with 2 dollars, followed by the error code. Returned error
codes can be:

$$-43 fnfErr File not found, check if the path is valid
$$-1 genericErr The file could not be found (older versions of the plug-in)

Other errors may be returned.

Special considerations
NEW you can use FileMaker styled paths, like "filewin:/C:/MyFiles/test.txt".

Example usage
Set Field[result, TrFile_GetTimestampCreated("-Unused" ; "C:\Test.txt")]
This may return the result: "2000-02-22 15:55:17".

Example 2
We assume that in your FileMaker file the following fields are defined:
 creationDateTime text
 gFilePath Global, text
gFilePath should contain the path to the file, for example "D:\Logs\L01.TXT" (Windows) or
"Mac HD:Logs:Log File 1" (Mac). In ScriptMaker add the following script step:
 Set Field[creationDateTime, TrFile_GetTimestampCreated("-Unused" ; gFilePath)]
This will store the creation date and time of the file specified by gFilePath in the field creationDateTime.

59

TrFile_GetTimestampLastAccessed

Syntax TrFile_GetTimestampLastAccessed(switches ; FileSpec)
Returns the date and time a file was accessed (opened) for the last time.

Parameters
switches not used, reserved for future use. Leave blank or put "-Unused"
FileSpec the Filespec or path to the file for which you want the information

Returned result
The returned result is the date and time the file was last accessed. The result is formatted like this:
YYYY-MM-DD HH:MM:SS. Store the result in a timestamp field.
An error code might also be returned. An error always starts with 2 dollars, followed by the error code. Returned error
codes can be:

$$-43 fnfErr File not found, check if the path is valid
Other errors may be returned.

Special considerations
On Windows some file systems (FAT) only store the actual date of the last access. The time in this case the time part will
be 00:00:00..

Example usage
Set Field[lastAccessedTimestamp, TrFile_GetTimestampLastAccessed("-Unused" ; "C:\Test.txt")]
This may return the result: "2006-12-22 15:55:17".

Example 2
We assume that in your FileMaker file the following fields are defined:
 lastAccessedDateTime timestamp
 gFilePath Global, text
gFilePath should contain the path to the file for example "D:\Logs\L01.TXT" (Windows) or "Mac HD:Logs:Log 1" (Mac).
In ScriptMaker add the following script step:
 Set Field[lastAccessedDateTime, TrFile_GetTimestampLastAccessed("-Unused" ; gFilePath)]
This will store the timestamp the file, specified by gFilePath, was opend for the last time of the file in the field
lastAccessedTime.

60

TrFile_GetTimestampModified

Syntax TrFile_GetTimestampModified(switches ; FileSpec)
Returns the modification date and time for the file specified by the FileSpec. The modification date and time are also
displayed in the Finder or Explorer.

Parameters
switches not used, reserved for future use. Leave blank or put "-Unused"
FileSpec the Filespec or path to the file for which you want the information

Returned result
The returned result is the modification date and time of the file. The result is formatted like this:
YYYY-MM-DD HH:MM:SS. Store the result in a text field.
An error code might also be returned. An error always starts with 2 dollars, followed by the error code. Returned error
codes can be:

$$-43 fnfErr File not found, check if the path is valid
$$-1 genericErr The file could not be found (older versions of the plug-in)

Other errors may be returned.

Special considerations
NEW you can use FileMaker styled paths, like "filewin:/C:/MyFiles/test.txt".

Example usage
Set Field[result, TrFile_GetTimestampModified("-Unused" ; "C:\Test.txt")]
This may return the result: "2000-12-31 15:55:17".

Example 2
We assume that in your FileMaker file the following fields are defined:
 modificationDateTime text
 gFilePath Global, text
gFilePath should contain the path to the file, for example "D:\Logs\L2000_01.TXT" (Windows) or "Mac HD:Logs:Log
2000_01" (Mac). In ScriptMaker add the following script step:
 Set Field[modificationDateTime, TrFile_GetTimestampModified("-Unused" ; gFilePath)]
This will store the modification date and time of the file specified by gFilePath in the field modificationDateTime.

61

TrFile_GetTypeOfItem

Syntax TrFile_GetTypeOfItem(switches ; FileSpec)

Returns the type of an item, for example if it is a folder or a file.

Parameters
switches not used, reserved for future use. Leave blank or put "-Unused"
FileSpec the Filespec or path to the file or folder for which you want to know the type

Returned result
The returned result can be one of:
 file if the path points to a file
 folder if the path points to a folder (directory)
 package folder if the path points to a package folder (Mac OS X only)
If the path does not exist or if an error occurs an error code will be returned, starting with $$:
 $$-43 fnfErr File or folder not found
 $$-50 paramErr Parameter error
Other error codes may be returned.

Special considerations
This function provides an easy way to see if a path points to a folder or a file. Please note that in the future other types may
be returned.
About package folders: these are folders that behave more like a file. For example all Mac OS X applications are package
folders.

Example usage
TrFile_GetTypeOfItem("-Unused" ; "C:\Test.txt")]
This will return "file" if the file exists (and is a file). If it does not exists $$-43 is returned.

Example 2
Set Variable [$whatKind ; TrFile_GetTypeOfItem("-Unused" ; "filemac:/Mac HD/Users/Smith/Data Folder)]
This will set the variable $whatKind to "folder" if the folder exists (and is a folder). If it does not exists $$-43 is returned.

62

TrFile_Launch

Syntax TrFile_Launch(switches ; FileSpec ; { params })
Opens a file with the application that has registered it. This is the same application that would open it if you would
manually double-click it.

Parameters
switches not used, reserved for future use. Leave blank or put "-Unused"
FileSpec the Filespec or path to the file to be launched
params (optional) extra parameters to be sent to the launching application (Windows only)

Returned result
The returned result is an error code. An error always starts with 2 dollars, followed by the error code. You should always
check for errors. Returned error codes can be:
 0 no error The file was opened with its application
 $$-35 nsVolErr No such volume (Wrong disk name or not mounted).
 $$-43 fnfErr File not found.
 $$-50 paramErr Parameter error.
 $$-1 genericErr The file could not be opened.
Other errors may be returned.

Special considerations
On the Mac the program that opens the file is determined by the FileType of the file.
On Windows this is determined by the 3 letter extension of the file.
So a text file "ReadMe.txt" will usually be opened by SimpleText (Mac) or WordPad (Windows).
On Windows you can add extra parameters to the launch command, which are then sent to the launching application.

Example usage
Set Field[result, TrFile_Launch("-Unused" ; "C:\readme.doc")]
This will open the file in the application Microsoft Word.

Example 2
We assume that in your FileMaker file the following fields are defined:
 gErrorCode Global, number
 gFilePath Global, text
gFilePath should contain the path to the file, for example "D:\Logs\L01.TXT" (Windows) or "Mac HD:Logs:Log 1" (Mac).
In ScriptMaker add the following script step:
 Set Field[gErrorCode, TrFile_Launch("-Unused" ; gFilePath)]
This will launch the file specified by gFilePath with its application.

63

TrFile_ListDisks

Syntax TrFile_ListDisks(switches)
Lists the names of all currently available disks.

Parameters
switches (optional) determine way the result is returned
Switches can be empty or:
-ReturnAtEnd add an extra return character after the last found item in the list

Returned result
disknames a list of names of all the disks that are currently mounted (available).

Special considerations
Use FindFolder to find the startup disk.

Example usage
Set Field[result, TrFile_ListDisks("")]
On Mac OS this will return a list of names of all the disks that are currently mounted, for example:

KES¶
SPOCK¶
Photos till 2004¶
Fotos tm 991115

On Windows the drive letters of the available disks are returned, for example:
A:¶
C:¶
D:¶
K:

64

TrFile_ListFolder

Syntax TrFile_ListFolder(switches ; FolderSpec)
Lists what is inside a folder (directory). It will return all files and/or folders, depending on the switches given.

Parameters
switches these determine the items that are listed
FolderSpec the FileSpec or path to the folder to list
switches can be one or more of the following:
-Files list all files in this folder
-Folders list all folders (subdirectories) in this folder
-Showaliases list all aliases (shortcuts) in this folder
-Showshortcuts list all aliases (shortcuts) in this folder (you can use the one you like)
-Showinvisibles list all invisible files and folders
-Showpointdirs Windows: list also the directory . (current dir) and .. (parent dir)
-Showpointdirs Mac OS: this switch is ignored
-Longnames (default) Mac OS X: return long names, possibly more than 31 characters
-Shortnames Mac OS X: return shortened names, less than 31 characters long
-Recursive get the list of files and folders and all the subfolders of the folder you are listing
-ShowPackageContents (Mac OS X) also list the contents of a package folder (used in combination with -
Recursive)
-DontEncodeSlash (Mac OS X) dont encode slashes in name with %2F (in combination with -Recursive)
-ReturnAtEnd add an extra return character after the last found item in the list

Returned result
folder list a list of names of the items separated by returns.

Special considerations
Starting with v5.5 you can now recursively get the list of files and folders and all the subfolders of the folder you are
listing. To enable this add the new switch "-Recursive". Note that files and folders in subfolders will be listed with the
relative folderpath, with a slash as separator, for example "SubFolder1/filename.txt".
Also starting with v5.5 the switch "-Longnames" is the default, so you no longer need to specify it. If you want short names
(on Mac OS X): use the "-Shortnames" switch. Mac OS 9.x supported only names up to 31 characters, so with the "-
Shortnames" switch the names will be shorter or equal than 31 characters, for longer names the file name will look like
mygreatimagefilebuttoo#E11E.txt
NEW you can use FileMaker styled paths, like "filewin:/C:/MyFiles/test.txt".

Example usage
Set Field [result, TrFile_ListFolder("-Files -Folders " ; "Mac HD:")]
This will return a list of all files and folders on the hard disk "Mac HD". Note that the order of the switches is not relevant.
This might be returned:

Test.fp7¶
Desktop Folder¶
Program files¶
etc...

On Windows an example usage is:
Set Field [result, TrFile_ListFolder("-Files -Showshortcuts" ; "C:\Data\")]

This will return a list of all files and shortcuts on the hard disk "C:\Data\".

65

TrFile_ListFolder

Example 2
We assume that in your FileMaker file the following fields are defined:
 gFolderPath Global, text
 gFolderList Global, text
gFolderPath should contain the path to the folder, for example "D:\Logs\Data\" (Windows) or "Mac HD:Logs:Data:" (Mac
OS). In ScriptMaker add the following scriptstep:
 Set Field[gFolderList, TrFile_ListFolder("-Files -Folders " ; gFolderPath)]
This will list the contents of the folder specified in the gFolderPath.

66

TrFile_MetaData

Syntax TrFile_MetaData(switches ; FileSpec)
Gets metadata out of a graphic file. Metadata can be inserted by for example Photoshop, and can contain a description of
the image, copyright information, etc.

Parameters
switches these determine the metadata that is returned
FileSpec the FileSpec or path to the file
switches can be one or more of the following:
-GetIPTC get the IPTC metadata (Photoshop's File Info)
-GetXMP get XMP metadata (Adobe's Extensible Metadata Platform)
-GetExif get the Exif metadata (A standard for Digital camera's)
-GetRawExif get the Exif metadata (A standard for Digital camera's), in a more original form
-GetGPS get the GPS (Global Positioning System) metadata, with the image coordinates
-GetJPEGComment get the JPEG comment metadata of a JPEG file
-GetImageURL get the URL metadata (Photoshop's File Info extension)
-GetImageDescription get a description like width, height and depth, resolution, codec name etc.
-SourceMacCharSet the IPTC data has Mac encoded characters
-SourceWinCharSet the IPTC data has Windows encoded characters
-DontUseAutoUTF8Detection disable the automatic detection of UTF8 encoding
For movies these switches can be used:
-GetMovieDescription get a description like width, height and depth, timecode, frames per second, codec
name etc.
-GetMovieDuration get the duration in seconds of a movie
-GetTimecodeBegin get the begin Timecode of a movie
-GetTimecodeEnd get the end Timecode of a movie
-GetTimecodeCurrent get the current Timecode of a movie
If there is no Timecode track an empty string is returned.
For PDFs this switch can be used:
-GetPDFDescription get metadata of a PDF file, such as the document’s title, author, and creation date

Returned result
metadata the requested metadata, if available.
If not available an error is returned:
$$-2026 userDataItemNotFound

Special considerations
Note that the data is returned in a raw form. See the example files "IPTC_XMP_Metadata.fp7" and GetEXIF.fp7" for
information on how to parse this.
Exif (Exchangeable image file) metadata in an image file will contain annotation data such as the time a photo was created,
aperture and shutter speed. Your digital camera needs to have put this in the file.
From v6.0: When using the switch "-GetIPTC" the plug-in can now automatically detect if the text is UTF-8 encoded (and
also returns with the metadata text correctly formatted). If UTF8 format is detected it will override the switches: "-
SourceMacCharSet" and "-SourceWinCharSet".
IPTC data in image files can also be either Mac or Windows encoded . With the switches "-SourceMacCharSet" and "-
SourceWinCharSet" you can manually tell the plug-in which character encoding you expect in the image files.
Alternatively you can retrieve both encodings and then see which is best. Note: If you don't specify a CharSet switch, the
plug-in uses the encoding of the platform it is running on.
Version 5.5 added getting Exif from RAW files. v4.5 added the -GetRawExif switch: this will return the Exif data in a

67

TrFile_MetaData
more original form, as fractions. For example aperture will be returned as 95/32, instead of 2.96875. This makes it possible
to write Exif data back in the original form, with the TrFile_SetMetaData function.

Example usage
 Set Field[result, TrFile_MetaData("-GetExif " ; "C:\myData\Photo1.jpg")]
This will return the raw EXIF data. The data will look like this:

##EXIF 270
OLYMPUS DIGITAL CAMERA
##END 270
##EXIF 306
2011:06:09 10:50:40
##END 306
...

Example 2
 Set Field[result, TrFile_MetaData("-GetIPTC " ; gFilePath)]
This will return the raw IPTC data. The data will look like this:

##IPTC 120
FOR IMMEDIATE RELEASE--FILE--Shania Twain performs at the Country Music Association Awards show in

Nashville, Tenn., ...
##END 120
##IPTC 122
CJC RWP MAH
##END 122
##IPTC 105
SHANIA TWAIN
##END 105
##IPTC 40
FOR IMMEDIATE RELEASE. A SEPT. 22, 1999 FILE PHOTO. DIGITAL IMAGE
##END 40
...

68

TrFile_MountDisk

Syntax TrFile_MountDisk(switches ; zone ; server; disk; { username ; password })
Connect to a shared network volume, by mounting the disk. You can then for example read or save files on this disk.

Parameters
switches this modifies the behaviour of the function
zone (optional) the name of the AppleTalk zone (on Windows this parameter is not used)
server on Mac the name of the Server, on Windows the UNC name of the share
disk on Mac the name of the disk, on Windows (optional) the drive letter to use
username (optional) the name of the user (if empty guest access is tried)
password (optional) the password of this user
Switches can be empty or one of this on Mac OS X:
 -TwoWayEncryptPassword (default) use a 2 way encrypted password to logon
 -OneWayEncryptPassword use a 1 way encrypted password to logon
 -PlainPassword send the password in plain text
Switches can be empty or one of this on Windows:
 -ReUseDriveLetter (default) if the network disk already is mapped reuse that drive letter
 -AlwaysNewDriveLetter always map a new drive letter

Returned result
On Mac OS The returned result is an error code. If no error occurs a zero is returned.
On Windows the returned result is the drive letter or an error code. An example drive letter can be: "F:"
An error always starts with 2 dollars, followed by the error code. You should always check for errors.
$$-35 no such volume, disk not found
$$-50 parameter error, check if the supplied parameters are correct
$$-5023 the user is not authorized for this volume
$$-5000 Insufficient access privileges for operation
$$67 (Windows) the specified UNC name is invalid or can not be found.
$$1200 (Windows) the specified drive letter is invalid. enter a valid drive letter, like "K:".
$$2250 (Windows) not connected to a network
Other errors can be returned.

Special considerations
Due to differences in operating systems this function behaves a bit different on Mac compared to Windows. On Windows
there is no zone name for example. See the platform specific examples below.
On Mac OS the plug-in also supports URL style AFP (AppleTalk File Protocol) servers. See also the examples below.
Regarding sending passwords on Mac OS: The plug-in always tries to use 2 way encrypted passwords. If however the
server does not support this you can specify to use a one way encrypted password or a plain password, by giving the -
OneWayEncryptPassword or -PlainPassword switch respectively.
On Windows the "server" parameter should be a UNC name, formatted like "\\servername\share". Also on Windows the
parameter "disk" indicates the drive letter to use, like "K:". If empty the function picks a free drive letter.
IMPORTANT On some Windows implementations the username and password parameter have been switched. If you get a
authorization error, try reversing the username and password!
After mounting the shared disk icon should now appear on your desktop (on Mac OS) or in the My Computer folder (on
Windows). Depending on your access privileges, you can copy files, create folders and use items on the shared disk as if
they were on your local hard disk.

Example usage

69

TrFile_MountDisk

Mac OS:
Set Field [result, TrFile_MountDisk("-Unused " ; "MacZone" ; "McServer" ; "Shared Disk" ; "George" ; "secret")
Set Field [result,TrFile_MountDisk("-Unused " ; "" ; "McServer" ; "Guest folder")
The first set field step will mount the hard disk "Shared Disk" of server "McServer" in zone "MacZone" using the user
name "George" with password "secret".
The second set field step will mount the volume "Guest folder" of server "McServer" using guest access. As the zone
parameter is empty, the server can be in any zone.
The plug-in also supports URL style AFP servers names. For example a server on the intranet:
Set Field [result, TrFile_MountDisk("-Unused" ; "" ; "afp://192.168.1.55" ; "Shared Disk")]
Starting with version 2.6.1 the plug-in also supports URL style WebDAV servers names on Mac OS X 10.2 and later. For
example an iDisk server:
Set Field [result, TrFile_MountDisk(
 "-Unused" ; "" ; "http://idisk.mac.com/youridiskname" ; "")]
You can also connect to servers on the public Internet, for example:
Set Field [result, TrFile_MountDisk("" ; "" ; "afp://tramp.tr.fh-hannover.de" ; "Oeffentliche_Software")]
On Windows:
Set Field [result,

TrFile_MountDisk("-ReUseDriveLetter" ; "unused zone" ; "\\Troi Server\Projects" ; "" ; "George" ; "secret")]
Set Field [result,

TrFile_MountDisk("-Unused " ; "unused zone" ; "\\Troi Server\Projects" ; "Z:")]
The first set field step will mount the share "Projects" of server "Troi Server". using the user name "George" with password
"secret". The second set field step will mount the same share using guest access, and mounting it as drive "Z:".

70

afp://192.168.1.55
http://idisk.mac.com/youridiskname
afp://tramp.tr.fh-hannover.de

TrFile_MoveFile

Syntax TrFile_MoveFile(switches ; sourceFileSpec ; destinationFileSpec)
Moves (or renames) a file from one disk location to another.

Parameters
switches not used, reserved for future use. Leave blank or put "-Unused"
sourceFileSpec the path to the file to move
destinationFileSpec the path where the file must be moved to

Returned result
The returned result is an error code. An error always starts with 2 dollars, followed by the error code. You should always
check for errors. Returned error codes can be:

0 no error The file was moved
$$-43 fnfErr Source file not found, or destination directory does not exist
$$-48 dupFNErr Destination file already exists
$$-1 genericErr The file could not be moved

Other errors may be returned.

Special considerations
TIP: You can also use this function to rename a file
See also the functions "TrFile_SelectFileDialog and TrFile_SaveFileDialog" to get a FileSpec for a file.
This function only works when the source and destination file are on the same disk. If this is not the case, use the
TrFile_CopyFile function and (optionally) use the TrFile-DeleteFile function to delete the source file.

Example usage
We assume that in your FileMaker file the following fields are defined:
 gErrorCode Global, number
 gSourceFilePathGlobal, text
 gDestFilePath Global, text
gSourceFilePath should contain the path to an existing file, for example "D:\Logs\Log01.TXT" (Windows) or "Mac HD:
Logs:Log 1" (Mac). gDestFilePath should contain the path to the destination and should not exist for example "D:
\New\L2000_01.TXT" (Windows) or "Mac HD:New:Log 2000_01" (Mac). In ScriptMaker add the following scriptstep:
 Set Field[gErrorCode, TrFile_MoveFile("-Unused" ; gSourceFilePath ; gDestFilePath)]
This will move the source file to the path indicated in the gDestFilePath.

Example 2
Renaming a file: assume your C disk already contains a file "Testtext.txt". We assume that a global number field
gErrorCode is defined. In ScriptMaker create the following script:
 Set Field[gErrorCode, TrFile_MoveFile("-Unused" ; "C:\Testtext.txt" ; "C:\NewName.txt")]
This script will move (rename) the file "Testtext.txt" to the "NewName.txt" file in the same directory. Note that on Mac
OS the paths will be like: "Work Disk:NewName.txt".

71

TrFile_MoveFolder

Syntax TrFile_MoveFolder(switches ; sourceFolderSpec ; destinationFolderSpec)
Moves a folder to the specified folder path. Can also be used to rename the folder.

Parameters
switches reserved for future use, leave empty or set to "-Unused"
sourceFolderSpec the Filespec or path to the source folder to move
destinationFolderSpec the Filespec or path where the folder must be moved to

Returned result
The returned result is an error code. An error always starts with 2 dollars, followed by the error code. You should always
check for errors. Returned error codes can be:
0 no error The folder was moved to the new place
$$-43 fnfErr Source folder not found, or destination folder does not exist
$$-48 dupFNErr Destination folder already exists
$$-122 badMovErr The destination folder is inside the source folder
$$-1407 errFSNotAFolder The source is not a folder
Other errors may be returned.

Special considerations
You can use the function TrFile_DeleteFolder to delete a folder first if it exists at the destination.
On Mac this function only works when the source and destination folder are on the same disk. If this is not the case, use the
TrFile_CopyFolder function and (optionally) use the TrFile-DeleteFolder function to delete the source folder.

Example usage
Assume your C disk already contains a folder "TestFolder" and a folder "MyFiles". We assume that a global number field
gErrorCode is defined. In ScriptMaker create the following script:
 Set Field[gErrorCode, TrFile_MoveFolder("-Unused" ; "C:\TestFolder" ; "C:\MyFiles\MovedFolder")]
This script will move the folder"TestFolder" and its contents to the "MovedFolder" file inside the folder "MyFiles" on the
C: disk. On Mac OS X the paths will be of the form "Mac HD:MyFiles:MovedFolder".
Notice that the destination folder has been renamed.

Example 2
We assume that in your FileMaker file the following fields are defined:
 gErrorCode Global, number
 gSourceFolderPath Global, text
 gDestFolderPath Global, text
gSourceFolderPath should contain the path to an existing folder, for example "D:\Logs\" (Windows) or "Mac HD:
Logs:" (Mac). gDestFolderPath should contain the path to the destination and should not exist, for example "D:
\Logs\L2007_12" (Windows) or "Mac HD:Logs:Log 2007_12" (Mac). In ScriptMaker add the following script step:
 Set Field[gErrorCode, TrFile_MoveFolder("-Unused" ; gSourceFolderPath ; gDestFolderPath)]
This will move the source folder to the path indicated in the gDestFolderPath.

72

TrFile_Reveal

Syntax TrFile_Reveal(switches ; FileSpec)
Reveals a file (or folder) in the Finder or Explorer.

Parameters
switches not used, reserved for future use. Leave blank or put "-Unused"
FileSpec the Filespec or path to the file to be revealed

Returned result
The returned result is an error code. An error always starts with 2 dollars, followed by the error code. You should always
check for errors. Returned error codes can be:
 0 no error The file was revealed in the Finder or Explorer
 $$-35 nsVolErr No such volume (Wrong disk name or not mounted)
 $$-43 fnfErr File not found
 $$-50 paramErr Parameter error
Other errors may be returned.

Special considerations
You can reveal files ànd folders!
NEW you can use FileMaker styled paths, like "filewin:/C:/MyFiles/test.txt".

Example usage
Set Field[result, TrFile_Reveal("-Unused" ; "C:\readme.doc")]
This will make the file visible in a Windows Explorer window and select it.

Example 2
We assume that in your FileMaker file the following fields are defined:
 gErrorCode Global, number
 gFilePath Global, text
gFilePath should contain the path to the file, for example "D:\Logs\L01.TXT" (Windows) or "Mac HD:Logs:Log 1" (Mac).
In ScriptMaker add the following script step:
 Set Field[gErrorCode, TrFile_Reveal("-Unused" ; gFilePath)]
This will show the file specified by gFilePath in the Finder or Explorer. It will open the enclosing folder and show the files
selected.

73

TrFile_SaveFileDialog

Syntax TrFile_SaveFileDialog(switches ; prompt ; { defaultName ; { initialFolder }})
Presents the user with a dialog, in which the user can specify where to save a file. The function returns with the FileSpec of
the chosen file. Use this FileSpec for other File plug-in functions.

Parameters
switches not used, reserved for future use. Leave blank or put "-Unused"
prompt the prompt that will be displayed to instruct the user
defaultName (optional) the default file name of the file to be saved
initialFolder (optional) the FileSpec or path to the folder where the dialog initially starts

Returned result
FileSpec: The function returns a FileSpec for the selected file.
Use this FileSpec as the basis for other File plug-in functions.
If the user cancels an error code of "$$-1" is returned.

Special considerations
New: filtering now also available on Windows! To change the default filtering see the TrFile_SetDefaultType function, or
take a look at "Filtering Files" in the example databases.

Example usage
 Set Field[myFileName, TrFile_SaveFileDialog(

"Please choose a file to create" ; "myFile.txt" ; gInititialDir)]
 If [Left(myFileName, 2) <> "$$"]
 Set Field[gErrorCode, TrFile_CreateFile(myFileName)]
 End If
This will ask the user for a file to create, which is then created.

74

TrFile_Search

Syntax TrFile_Search(switches ; folderSpec ; searchName)
Search a folder (or volume) for a file or folder (directory).

Parameters
switches these determine the items that are listed
folderSpec the path to the folder (or volume) in which to search
searchName the (part of the) filename or foldername you want to find
switches can be one or more of the following:
-Files search for files
-Folders search for folders
-Exactname the filename must exactly match the searchname
-Showaliases search also aliases (shortcuts)
-Showshortcuts search also aliases (shortcuts) (you can use the one you like)
-Showinvisibles search also invisible files and folders
-Longnames (default) Mac OS X: return long names, possibly more than 31 characters
-Shortnames Mac OS X: return shortened names, less than 31 characters long
-ReturnAtEnd add an extra return character after the last found item in the list

Returned result
paths a list of paths of the found items separated by returns.

Special considerations
With v6.0 you can now also specify a folder in which the search must be done, instead of searching the whole volume.
Note that the final path is also followed by a return!
Starting with v5.5 the switch "-Longnames" is the default, so you no longer need to specify it. If you want short names (on
Mac OS X): use the "-Shortnames" switch. Mac OS 9.x supported only names up to 31 characters, so with the "-
Shortnames" switch the names will be shorter or equal than 31 characters, longer filenames will look like
mygreatimagefilebuttoo#E11E.txt

Example usage
 Set Field [result, TrFile_Search("-files -folders" ; "HD:Users:Kes:" ; "readme")]
This will return a list of all files and folders in folder "HD:Users:Kes:" with the name 'readme'. Note that the order of the
switches is not relevant, and also the & is just there for readability. This might be returned:

HD:Users:Kes:Foto, film, geluid:Geluiden:Alert!!!:Readme¶
HD:Users:Kes:Programma's:Beeld:GIFConverter 2.3.7 ƒ:README-registration¶
HD:Users:Kes:Programma's:Beeld:MOVIES:OBJTOOL:README, Make QTVR Object¶
etc...

On Windows an example use is:
 Set Field [result, TrFile_Search("-files -folders" ; "C:" ; "readme")]

Example 2
 Set Variable [$result, TrFile_Search("-files -folders -invisibles" ; "HardDisk:" ; "readme")]
This will return a list of all files and folders on the hard disk "HardDisk" with the name 'readme', including invisible files.

75

TrFile_SelectFileDialog

Syntax TrFile_SelectFileDialog(switches ; prompt ; { initialFolder })
Presents the user with a standard dialog and displays all files in a directory.

Parameters
switches reserved for future use, leave empty or set to "-Unused"
prompt the prompt that will be displayed to tell the user which file to select
initialFolder (optional) the FileSpec or path to the folder where the dialog initially starts
Switches can be:
-SelectDefault (Mac OS X) select the default location. the initial folder appears as the current selection
-SelectPackages (Mac OS X) Allow selection of Mac OS X packages, like application packages.
-OpenPackages (Mac OS X) Allow Mac OS X packages, like application packages, to be opened and
navigated
-HideInvisibles hides invisible files in the selection dialog.
On Mac OS X you can also add:
-ReturnFSSpec the function returns the folder as a FSSpec instead of a full path.

Returned result
The function returns a fullpath (or FSSpec) for the selected file to be used with one of the file manipulation functions.
If the user cancels an error code of "$$-1" is returned.

Special considerations
New: filtering now also available on Windows! To change the default filtering see the TrFile_SetDefaultType function, or
take a look at "Filtering Files" in the example databases.
On Mac the dialog will filter and show only text files by default.
On Windows the dialog will filter and show all files by default.
NOTE: Mac OS X packages, like application packages, are actually folders, so this will return a folder!

Example usage
On Mac OS X:
Set Field[MyFileName, TrFile_SelectFileDialog("-Unused" ; "Please choose a file to import" ; "Mac HD:Solution Files:
Import:")]
Set Field[MyFileName, TrFile_SelectFileDialog("-ReturnFSSpec -SelectPackages" ; "Please choose a file to import" ;
"Mac HD:Solution Files:Import:")]
Or on Windows:
Set Field[MyFileName, TrFile_SelectFileDialog("-Unused" ; "Please choose a file to import" ; "C:\\Solution
Files\\Import\\")]
This will start the selection at the folder "Import" in the "Solution Files" Folder.
It returns "HD Mac:Text files:My Letter" if the user selects that particular file on Mac OS. On Windows it may return "C:
\Text files\My Letter".

76

TrFile_SelectFolderDialog

Syntax TrFile_SelectFolderDialog(switches ; prompt ; { initialFolder })
With this function the user can select a folder on disk. The function will show the user a standard dialog with the hierarcy
of folders on the computer.

Parameters
switches reserved for future use, leave empty or set to "-Unused"
prompt the prompt that will be displayed to tell the user which folder to select
initialFolder (optional) the path to a folder on disk that will be used as the starting point for the selection
dialog

Returned result
FileSpec: The function returns a FileSpec for the selected folder. This folder can be used with other
functions of the plug-in.
If the user cancels an error code of "$$-1" is returned.

Example usage
 Set Field[result, TrFile_SelectFolderDialog("-Unused " ; " Please choose a folder where you want to put the files." ; " C:
\Data\")]
This will present a folder selection dialog. The dialog initially shows the folder: "C:\Data\". The user can then select a
folder and click on OK. The function returns with the path to the folder, for example: "D:\MyFiles\Databases\".

Example 2

77

TrFile_SelectFolderDialog

We assume that in your FileMaker file the following fields are defined:
 gFolderPath Global, text
 gInitialFolder Global, text
gInitialFolder should contain the path to a folder, for example "D:\Logs\Data\" (Windows) or "Mac HD:Logs:Data:" (Mac
OS). In ScriptMaker add the following script step:
 Set Field[gFolderPath, TrFile_SelectFolderDialog(
 "-Unused" ; "Please choose a folder where you want to put the files." ; gInitialFolder)]

After the dialog gFolderPath will contain the path to the selected folder.

78

TrFile_SetContents

Syntax TrFile_SetContents(switches ; text)
Sets the contents of an existing file indicated by the “SetDefaultFileSpec” function.

Parameters
switches these alter the behaviour of the function
text the characters that you want to write in the file
Switches can be empty or one of this:
-Encoding=Native (default)
-Encoding=UTF8
-Encoding=ASCII_DOS
-Encoding=ASCII_Windows
-Encoding=ASCII_Mac
-Encoding=ISO_8859_1 (Windows Latin-1)
-Encoding=BytesOnly only characters in the range 0-255 are written, others are skipped
This determines the character encoding of the text to be written.
You can also add this switch:
-CRtoCRLF Use Windows line endings. Returns in the text parameter are substituted with CRLF (Carriage
Return followed by a Line Feed) in the written file.

Returned result
The returned result is an error code. An error always starts with 2 dollars, followed by the error code. You should always
check for errors. Returned error codes can be:

0 no error The string of characters was written in the file
$$-1 genericErr The file could not be opened for writing (You may need to create the file first).

Other errors may be returned.

Special considerations
See also the functions:
"TrFile_SaveFileDialog" to get a FileSpec for the file and "TrFile_SetDefaultFileSpec" to indicate the file to affect.
Note that the maximum size of SetContents is currently 150 million characters which equals to about max. 600 million
characters written. This depends on the encoding, for example one Unicode character encoded as UTF-8 can require up to 4
characters in the written file.
Use the TrFile_AppendContents function if you need to append more characters.
The default is -Encoding=Native, which is the current encoding as set in the system preference, for example on western
Windows systems it usually is ISO_8859_1 or ASCII_Windows. On Mac OS X the default will be ASCII_Mac. To be able
to export all possible characters (like chinese characters) it is best to export with encoding UTF-8.

Example usage
Assume your C disk already contains a file "Testtext.txt" which is empty. We assume that a global number field
gErrorCode is defined. In ScriptMaker create the following script:

Set Field[gErrorCode, TrFile_SetDefaultFileSpec("C:\Testtext.txt")]
Set Field[gErrorCode, TrFile_SetContents("-unused" ; "Hello there.")]

This script will set the contents of the file "C:\Testtext.txt" to the text "Hello there.".

Example 2
We assume that in your FileMaker file the following fields are defined:
 gErrorCode Global, number

79

TrFile_SetContents
 gFilePath Global, text
 textField text
gFilePath should contain the path to an existing file, for example "D:\Hello.TXT" (Windows) or "Disk1:Hello" (Mac).
TextField contains the text you want to write. In ScriptMaker add the following scriptstep:
 Set Field[gErrorCode, TrFile_SetDefaultFileSpec(gFilePath)]
 Set Field[gErrorCode, TrFile_SetContents("-Encoding=ASCII_Windows" ; textField)]
This will set the default file to your file. Then the text is written to the file.

80

TrFile_SetDefaultCreator

Syntax TrFile_SetDefaultCreator(switches ; Creator)
Specifies the file creator to be used when creating a new file. This creator will be used for subsequent calls to "TrFile-
CreateFile".

Parameters
switches not used, reserved for future use. Leave blank or put "-Unused"
Creator The Creator of a file is a 4 character code used to designate the application that created a file.
For example: use "ttxt" to create a SimpleText text file

Returned result
This function return an error code.

Special considerations
See also the function "TrFile_CreateFile" to create a new empty file.
Mac only. Ignored on Windows.
Starting from v3.0.5: if you use "" as creator no creator is used for newly create files.

Example usage
We assume that in your FileMaker file the following fields are defined:
 gErrorCode Global, number
 gFilePath Global, text
 textField text
gFilePath should contain the path to an existing file, for example "D:\Hello.TXT" (Windows) or "Disk1:Hello" (Mac).
TextField contains the text you want to write. In ScriptMaker add the following scriptstep:
 Set Field[gErrorCode, TrFile_SetDefaultFileSpec(gFilePath)]
 Set Field[gErrorCode, TrFile_SetDefaultCreator("ttxt")]
 Set Field[gErrorCode, TrFile_SetDefaultType("TEXT")]
 Set Field[gErrorCode, TrFile_SetContents("-Encoding=ASCII_Windows" ; textField)]
This will set the default file to your file with a SimpleText FileType and Creator. Then the text is written to the file.

81

TrFile_SetDefaultFileSpec

Syntax TrFile_SetDefaultFileSpec(switches ; FileSpec)
Indicates a FileSpec (i.e. the file) to be used in succeeding functions where no FileSpec is indicated.

Parameters
switches not used, reserved for future use. Leave blank or put "-Unused"
FileSpec the Filespec or path to the file

Returned result
This function does not return anything at the moment. This may change in a future version.

Special considerations
NEW you can use FileMaker styled paths, like "filewin:/C:/MyFiles/test.txt".

Example usage
We assume that in your FileMaker file the following fields are defined:
 gErrorCode Global, number
 gFilePath Global, text
 textField text
gFilePath should contain the path to an existing file, for example "D:\Hello.TXT" (Windows) or "Disk1:Hello" (Mac).
TextField contains the text you want to write. In ScriptMaker add the following scriptsteps:
 Set Field[gErrorCode, TrFile_SetDefaultFileSpec(gFilePath)]
 Set Field[gErrorCode, TrFile_SetDefaultCreator("ttxt")]
 Set Field[gErrorCode, TrFile_SetDefaultType("TEXT")]
 Set Field[gErrorCode, TrFile_SetContents("-Encoding=ASCII_Windows" ; textField)]
This will set the default file to your file with a SimpleText FileType and Creator. Then the text is written to the file.

82

TrFile_SetDefaultType

Syntax TrFile_SetDefaultType(switches ; fileTypes)
Sets the FileType to be displayed when browsing GetFile dialogs. Also sets the default file type when creating new files.

Parameters
switches not used, reserved for future use. Leave blank or put "-Unused"
fileTypes determine which files are shown. Also the first will be used when creating a file.
If no fileType is specified, the TrFile_SelectFileDialog function will display all files.
Mac: Individual file type must contain 4 characters and is case sensitive. Add more file types without separators.
Windows: The fileTypes parameter must be formated in pairs of lines. You can specify multiple pairs of lines.
The first line of the pair should contain a description of the files to be shown in the dialog. For example: "Text
Files (*.txt)".
The second line of the pair should contain the extension to be shown. For example: "*.txt". Also in the second
line you can use multiple extensions to filter on by separating them with a semi-colon ";". For example: "*.txt;*.
doc".

Returned result
This function does not return anything at the moment. This may change in a future version.

Special considerations
See also the function "TrFile_CreateFile" to create a new empty file.
New: filtering now also available on Windows!
Note that the format is quite different for windows!

Example usage
Mac: TrFile_SetDefaultType("TEXTttro") to display SimpleText and Teach Text read-only files.
Mac: TrFile_SetDefaultType("FMP5FMP7JPEG") to display FileMaker and JPEG files.
Windows: Below is an example that will initially show files with the extensions .fp7 and .fp5 (line 1 and 2). The user can
change the popup to only show JPEG files (line 3 and 4) or to show all files (line 5 and 6).
 TrFile_SetDefaultType("-Unused ";
 "FileMaker Pro files (*.fp7 ; *.fp5)¶" &
 "*.fp7;*.fp5¶" &
 "JPEG (*.jpg;*.jpe;*.jpeg)¶" &
 "*.jpg;*.jpe;*.jpeg¶" &
 "All files (*.*)¶" &
 "*.*")
TIP The * means 1 or more characters. If you use "a*.*" you can even filter on all filenames starting with the letter a. You
an also limit to a specific file name, for example "project1.doc" This will only let users select files named "project1.doc".

Example 2
We assume that in your FileMaker file the following fields are defined:
 gErrorCode Global, number
 gFilePath Global, text
 textField text
gFilePath should contain the path to an existing file, for example "D:\Hello.TXT" (Windows) or "Disk1:Hello" (Mac).
TextField contains the text you want to write. In ScriptMaker add the following scriptsteps:

83

TrFile_SetDefaultType
 Set Field[gErrorCode, TrFile_SetDefaultFileSpec(gFilePath)]
 Set Field[gErrorCode, TrFile_SetDefaultCreator("ttxt")]
 Set Field[gErrorCode, TrFile_SetDefaultType("TEXT")]
 Set Field[gErrorCode, TrFile_SetContents("-Encoding=ASCII_Windows" ; textField)]
This will set the default file to your file with a SimpleText FileType and Creator. Then the text is written to the file.

84

TrFile_SetFileAttribute

Syntax TrFile_SetFileAttribute(switches ; Filespec ; cftype ; comment)
Sets an attribute of the file specified by the FileSpec.

Parameters
switches these determine the attribute that is set
FileSpec the FileSpec or path to the file
cftype (only for creator, file type) the 4 letter Creator or File Type code
comment (only for finder comment) the text of the comment to set
switches can be one ore more of the following:
-Lock make the file locked (Mac OS) or Read-only (Windows)
-Unlock make the file unlocked (Mac OS) or remove the Read-only attribute (Windows)
-Hide make the file hidden (invisible)
-Unhide unhide the file (visible)
-SetArchive set the file's archive bit (Windows only)
-ResetArchive reset the file's archive bit (Windows only)
-LabelNum=X set the label number of a file or folder (Mac OS only)
-Findercomment set the the finder comment of a file (Mac OS only)
-Creator set the 4 letter Creator of a file (Mac OS only)
-Filetype set the 4 letter FileType of a file (Mac OS only)

Returned result
The returned result is an error code. An error always starts with 2 dollars, followed by the error code. You should always
check for errors. Returned error codes can be:

0 no error The attribute was set.
$$-43 fnfErr File not found.
$$-50 paramErr There was an error with the parameter.
$$-1 genericErr An unspecified error occurred.

Other errors may be returned.

Special considerations
You'll get a parameter error ($$-50) if you try to do opposite actions at the same time, like "-unlock -lock".
If you specify "0000" (4 zero's) for the cftype the creator or file type will be set to empty.
from v6.0 you can now set the label of a folder too.

Example usage
 Set Field[result, TrFile_SetFileAttribute("-lock" ; "C:\test.doc")]
The file will be locked (made Read-Only) and the result will be 0 (provided the file exists).
 Set Field[result, TrFile_SetFileAttribute("-creator" ; "NELL:data:test.doc" ; "MSIE")]
 Set Field[result, TrFile_SetFileAttribute("-filetype" ; "NELL:data:test.doc" ; "TEXT")]
The file's Creator and FileType will be changed to a Internet Explorer text file.

Example 2
We assume that in your FileMaker file the following fields are defined:
 gFileSpec Global, text
 gLockIt Global, number (used as a boolean value)
 gErrorCode Global, number
gFileSpec should contain the path to an existing file, for example "D:\Out.txt" (Windows) or "Mac HD:Out.txt" (Mac). In

85

TrFile_SetFileAttribute
ScriptMaker add the following script step:
 Set Field[gErrorCode, TrFile_SetFileAttribute(
 If (gLockIt = 1, "-lock","-unlock") ; gFileSpec)]
This will make the file locked if gLockIt is 1 and unlocked otherwise.

86

TrFile_SetMetaData

Syntax TrFile_SetMetaData(switches ; sourceFileSpec; destFileSpec ; metadatablock)
Sets metadata into an image file. Metadata can contain a description of the image, copyright information, etc.

Parameters
switches these determine the metadata that is set
sourceFileSpec the FileSpec or path to the source file
destFileSpec (optional) the FileSpec or path to the destination file
metaDataBlock text formatted for this function
switches can be one or more of the following:
-SetIPTC set the IPTC metadata (Photoshop's File Info)
-SetExif set the Exif metadata
-MacCharSet the IPTC data has Mac encoded characters
-WinCharSet the IPTC data has Windows encoded characters

Returned result
The returned result is an error code:
0 (no error) the metadata was set
$$-43 fnfErr Source file not found
Other errors may be returned.

Special considerations
If the destination parameter is empty the metadata will be saved in the source file itself. This happens also when you
specify the same source file and destination file.
Currently only works with JPEGs.
ISSUES: Photoshop (or other programs) may have added other types of metadata, like XMP. These types of metadata are
not changed at the moment. This may cause inconsistent metadata in the file.
If you want to remove IPTC data set the metaDataBlock to ""
See the example files "IPTC_XMP_Metadata.fp7 for information on how to create the metadata block.

Example usage
 Set Field[gErrorCode, TrFile_SetMetaData("-SetIPTC" ; "C:\myData\Photo1.jpg" "##IPTC 120¶ my caption ¶##END
120")]
This will set the IPTC data, in this case only a caption. Note the returns in the IPTC data.

Example 2
 Set Field[gErrorCode,
TrFile_SetMetaData("-SetIPTC " & this::IPTC_DestinationCharSet ; this::PathToSourceFile; this::
PathToDestinationFile ; this::gMetaDataBlock)]
gMetaDataBlock should contain something similar to this below:

##IPTC 120
FOR IMMEDIATE RELEASE--FILE--Shania Twain performs at the Country Music Association Awards show in

Nashville, Tenn., ...
##END 120
##IPTC 122
CJC RWP MAH
##END 122

87

TrFile_SetMetaData
##IPTC 105
SHANIA TWAIN
##END 105
##IPTC 40
FOR IMMEDIATE RELEASE. A SEPT. 22, 1999 FILE PHOTO. DIGITAL IMAGE
##END 40
...

88

TrFile_SetTimestampCreated

Syntax TrFile_SetTimestampCreated(switches ; FileSpec ; timestamp)
Sets the creation date/time of the file specified by the FileSpec.

Parameters
switches reserved for future use, leave empty or set to "-Unused"
FileSpec the FileSpec or path to the file
timestamp new creation date/time of the file

Returned result
If successful it returns 0.
If unsuccessful it returns an error code starting with $$ and the error code. Possible codes are:

$$-43 The file was not found
$$-4241 The date/time is too big
$$-4245 The date/time is too small

Other error codes might be returned.

Special considerations
- Mac OS X limits (using file system HFS+): on Mac OS X the minimum representable date is January 1st, 1904 GMT. The
maximum representable date is February 6, 2040 at 06:28:15 GMT.
- Windows limits: The minimum representable date is January 1st, 1980. The maximum date is December 31, 2107.
- The timestamps are in local time.
- On Mac OS X it may take some time (about 5 secs) before the change is visible in the Finder. On Windows you need to
refresh a Window before you see the change.
- Some file systems may not support creation time.

Example usage
 Set Field[result, TrFile_SetTimestampCreated("-Unused" ; "C:\test.doc" ;

Timestamp (Date (6 ; 30 ; 2005) ; Time (10 ; 59 ; 59)))]
This will set the creation date/time to June 30th, 2005 at 10:59:59.

Example 2
We assume that in your FileMaker file the following fields are defined:
 gFileSpec Global, text
 gTimestampCreated Global, timestamp
 gErrorCode Global, text
gFileSpec should contain the path to an existing file, for example "D:\Out.txt" (Windows) or "Mac HD:Out.txt" (Mac).
gTimestampCreated should contain a valid date/time. In ScriptMaker add the following script step:
 Set Field[gErrorCode, TrFile_SetTimestampCreated("-Unused" ; this::gTheFile ; this::gTimestampCreated)
This will set the file's creation date/time to the value in the timestamp field.

89

TrFile_SetTimestampModified

Syntax TrFile_SetTimestampModified(switches ; FileSpec ; timestamp)
Sets the modification date/time of the file specified by the FileSpec.

Parameters
switches reserved for future use, leave empty or set to "-Unused"
FileSpec the FileSpec or path to the file
timestamp new modification date/time of the file

Returned result
If successful it returns 0.
If unsuccessful it returns an error code starting with $$ and the error code. Possible codes are:

$$-43 The file was not found
$$-4241 The date/time is too big
$$-4245 The date/time is too small

Other error codes might be returned.

Special considerations
- Mac OS X limits (using filesystem HFS+): on Mac OS X the minimum representable date is January 1st, 1904 GMT. The
maximum representable date is February 6, 2040 at 06:28:15 GMT.
- Windows limits: the minimum representable date is January 1st, 1980. The maximum date is December 31, 2107.
- The timestamps are in local time.
- On Mac OS X it may take some time (about 5 secs) before the change is visible in the Finder. On Windows you need to
refresh a Window before you see the change.

Example usage
 Set Field[result, TrFile_SetTimestampModified("-Unused" ; "Mac HD:data:test.txt" ;

Timestamp (Date (6 ; 30 ; 2005) ; Time (10 ; 59 ; 59)))]
This will set the modification date/time to June 30th, 2005 at 10:59:59.

Example 2
We assume that in your FileMaker file the following fields are defined:
 gFileSpec Global, text
 gTimestampCreated Global, timestamp
 gErrorCode Global, text
gFileSpec should contain the path to an existing file, for example "D:\Out.txt" (Windows) or "Mac HD:Out.txt" (Mac).
gTimestampCreated should contain a valid date/time. In ScriptMaker add the following script step:
 Set Field[gErrorCode, TrFile_SetTimestampModified("-Unused" ; this::gTheFile ; this::gTimestampCreated)
This will set the file's modification date/time to the value in the timestamp field.

90

TrFile_Substitute

Syntax TrFile_Substitute(switches ; sourceFile ; destinationFile ; search string ; replace string)
Substitutes every occurrence of a specified set of characters in a (text) file with another set of characters you specify, and
writes the revised file. The Substitute function is case sensitive.

Parameters
switches these determine how the function works. At the moment you can specify how

the function handles case differences
sourceFile the Filespec or path to the file which is the source for the substitution
destinationFile the Filespec or path where the resulting file must be written to
search string any text expression or field containing text
replace string any text expression or field containing text
switches can be one of the following:
-CaseSensitive substitute strings only if the case of the source string is the same
-IgnoreCase substitute strings even if the case differs
Switches can also be one of this:
-Encoding=Native (default)
-Encoding=UTF8
-Encoding=ASCII_DOS
-Encoding=ASCII_Windows
-Encoding=ASCII_Mac
This determines the character encoding of the text to be read.

Returned result
The returned result is an error code. An error always starts with two dollars, followed by the error code. You should always
check for errors. Returned error codes can be:

0 no error The destination file with the substitutions was created.
$$-43 fnfErr Source file not found, or destination directory does not exist
$$-48 dupFNErr Destination file already exists
$$-1 genericErr The substitution could not be made.

Other errors may be returned.

Special considerations
If the destination parameter is empty the substitution result will be saved in the source file itself. This happens also when
you specify the same source file and destination file (this possibility was added in version 2.5). Note that the plug-in uses a
temporary file to implement this feature, which can require the same amount of disk space as the source file. The plug-in
can fail if there is not enough space on the disk.
NOTE The length of the search and replace string can be up to 1 GB.
Up to v5.0 there was an error in the documentation: it was incorrectly stated that UTF-8 was the default encoding. The
default is -Encoding=Native, which is the current encoding as set in the system preference, for example on western
Windows systems it usually is ISO_8859_1 or ASCII_Windows.

Example usage
 Set Field[result, TrFile_Substitute(
 "-IgnoreCase" ; "C:\Data\temp.tab" ; "C:\Main.tab" ; "country" ; "world")]
This will create the file "C:\Main.TAB" where all occurences of "country" are replaced with the string "world". The case is
ignored, so that also a string "Country" will be substituted.

91

TrFile_Substitute
Example 2
We assume that in your FileMaker file the following fields are defined:
 gErrorCode Global, number gSearchStr Global, text
 gSourceFilePath Global, text gReplaceStr Global, text
 gDestFilePath Global, text
gSourceFilePath should contain the path to an existing file, for example "D:\TempLogs\Log01.TXT" (Windows) or "Mac
HD:TempLogs:Log 1" (Mac).
gDestFilePath should contain the path to the destination and should not exist, for example "D:\Output\L2000_01.
TXT" (Windows) or "Mac HD:Output:Log 2000_01" (Mac). In ScriptMaker add the following scriptstep:
 Set Field[gErrorCode, TrFile_Substitute("-CaseSensitive" ; gSourceFilePath ; gDestFilePath ;

gSearchStr ; gReplaceStr)]
This will create a new file gDestFilePath where all occurences of gSearchStr are replaced with the contents of gReplaceStr.

92

TrFile_UnmountDisk

Syntax TrFile_UnmountDisk(switches ; diskname)
Unmounts and ejects a remote or removable disk.

Parameters
switches not used, reserved for future use. Leave blank or put "-Unused"
diskname the name of the disk to be unmouneted or ejected

Returned result
The returned result is an error code. An error always starts with 2 dollars, followed by the error code. You should always
check for errors. Returned error codes can be:

0 no error The disk was ejected.
$$-35 nsVolErr No such volume (Wrong disk name or not mounted).
$$-47 fBsyErr The disk is in use.
$$-5010 afpFileBusy Can't eject as the disk is being shared.

Other errors may be returned.

Special considerations
Best to use only on Ejectable Disks or remote servers.
Since version 2.6 this function is also available on Windows. However it does not eject removable media, like a CD-ROM.

Example usage
Set Field[result, TrFile_UnmountDisk("Mac HD:")]
This will eject the hard disk "Mac HD", provided it is not the startup disk. On Windows an example is:
Set Field[result, TrFile_UnmountDisk("K:")]
This will unmount the mapped drive "K:"

Example 2
We assume that in your FileMaker file the following fields are defined:
 gErrorCode Global, number
 gDiskName Global, text
gFilePath should contain the path to the disk, for example "Archive CD:" (Mac). In ScriptMaker add the following script
step, which will eject the disk specified by gDiskName:
 Set Field[gErrorCode, TrFile_UnmountDisk(gDiskName)]

93

TrFile_Version

Syntax TrFile_Version(switches)
Use this function to see which version of the plug-in is loaded.
Note: This function is also used to register the plug-in.

Parameters
switches determine the behaviour of the function
switches can be one of this:
-GetVersionString the version string is returned (default)
-GetVersionNumber Returns the version number of the plug-in
-ShowFlashDialog Shows the Flash Dialog of the plug-in (returns 0)
-GetPluginInstallPath Returns the path where the plug-in is installed
If you leave the parameter empty the version string is returned.

Returned result
The function returns ? if this plug-in is not loaded. If the plug-in is loaded the result depends on the input parameter. It is
either a:
VersionString:
If you asked for the version string it will return for example "Troi File Plug-in 4.6"
VersionNumber:
If you asked for the version number it returns the version number of the plug-in x 1000. For example version 4.6 will return
number 4600.
ShowFlashDialogResult:
This will show the flash dialog and then return the error code 0.

Special considerations
IMPORTANT always use this function to determine if the plug-in is loaded. If the plug-in is not loaded use of external
functions may result in data loss, as FileMaker will return an empty field to any external function that is not loaded.

Example usage
We assume that a calculation number field cVersion is defined like this:
 cVersion = TrFile_Version
This will evaluate to "Troi File Plug-in <version number>". For version 6.1 this will be: "Troi File Plug-in 6.1".

Example 2
TrFile_Version("-GetVersionNumber") will return 4600 for version 4.6
TrFile_Version("-GetVersionNumber") will return 4620 for version 4.6.2
So for example to use a feature introduced with version 4.6 test if the result is equal or greater than 4600.

94

TrFile_VersionAutoUpdate

Syntax TrFile_VersionAutoUpdate
Use this function to see which version of the plug-in is loaded, formatted for FileMaker Server's AutoUpdate function.
Returns 8 digit number to represent an AutoUpdate version.

Parameters
none

Returned result
The function returns ? if this plug-in is not loaded. If the plug-in is loaded the result is a version number, it is returned in the
format aabbccdd where every letter represents a digit of the level, so versions can be easily compared.

Special considerations
The TrFile_VersionAutoUpdate function is part of an emerging standard for FileMaker plug-ins of third party vendors of
plug-ins. The version number can be easily compared, when using the Autoupdate functionality of FileMaker Server.

Example usage
TrFile_VersionAutoUpdate will return 04060000 for version 4.6
TrFile_VersionAutoUpdate will return 04060203 for version 4.6.2.3
So for example to use a feature introduced with version 4.6 test if the result is equal or greater than 04060000.

95

