

Troi Serial Plug-in 3.2
USER GUIDE
March 2012

Troi Automatisering
Boliviastraat 11
2408 MX Alphen a/d Rijn
The Netherlands

You can also visit the Troi web site at: <http://www.troi.com/> for additional information.

Troi Serial Plug-in is copyright 1999-2012 of Troi Automatisering. All rights reserved.

http://www.troi.com/

Table of Contents

Installing plug-ins .. 3
If You Have Problems .. 3
What can this plug-in do?.. 4
Software Requirements ... 4
FileMaker Server requirements and AutoUpdate .. 4

Getting started ... 5
Using external functions... 5
Where to add the External Functions?.. 5
Simple example ... 6

Summary of functions... 6
Steps for working with the Troi Serial Plug-in... 7
Specifying the port settings.. 7
Specifying the handshaking options.. 8
Receiving data via script triggering .. 10

Dispatch Scripting using Script Name.. 11
Dispatch Scripting for a specific port .. 11
Script Triggering on a Match String.. 13

Controlling input from the Serial Port ... 14

Function Reference ... 16
Serial_AsciiValueToText ... 16
Serial_Close ... 17
Serial_Control ... 18
Serial_DataWasReceived .. 19
Serial_Debug .. 20
Serial_GetPortNames .. 21
Serial_Open .. 23
Serial_Receive ... 25
Serial_Reinitialize .. 27
Serial_Send... 28
Serial_SetDispatchScript .. 30
Serial_TextToAsciiValue ... 32
Serial_Version .. 33
Serial_VersionAutoUpdate ... 34

Appendix A: ASCII Table ... 35

2

Installing plug-ins
 For Mac OS and Mac OS X:

 Quit FileMaker® Pro.
 Put the file “Troi_Serial.fmplugin” from the folder “Mac OS Plug-

in” into the “Extensions” folder in the FileMaker Pro application
folder.

 If you have installed previous versions of this plug-in, you are
asked: “An older item named “Troi_Serial.fmplugin” already exists
in this location. Do you want to replace it with the one you’re
moving?’. Press the OK button.

 Start FileMaker Pro. The first time Troi Serial Plug-in is used it will
display a dialog box, indicating that it has loaded and showing the
registration status.

For Windows:
 Quit FileMaker Pro.
 Put the file "Troi_Serial.fmx" from the directory "Windows Plug-in" into the

"Extensions" subdirectory in the FileMaker Pro application directory.
 If you have installed previous versions of this plug-in, you are asked: “This folder

already contains a file called 'Troi_Serial.fmx'. Would you like to replace the
existing file with this one?’. Press the Yes button.

 Start FileMaker Pro. The first time Troi Serial Plug-in is used it will display a
dialog box, indicating that it has loaded and showing the registration status.

The instructions above show FileMaker 10. You can also install the plug-in with FileMaker
Pro 7, 8.x, 9 or 11.

TIP 1 You can check which plug-ins you have loaded by going to the plug-in preferences: Choose Preferences from the Edit
menu, and then choose Plug-ins.

You can now open the file "All Serial Examples.fp7" to see how to use the plug-in's functions. There is also a function overview
in the download.

If you have problems
This user guide tries to give you all the information necessary to use this plug-in. So if you have a problem please read this user
guide first. You may also visit our support web page:

 <http://www.troi.com/support/>
This page contains FAQ's (Frequently Asked Questions), help on registration and much more. If that doesn't help you can get free
support by email. Send your questions to support@troi.com with a full explanation of the problem. Also give as much relevant
information (version of the plug-in, which platform, version of the operating system, version of FileMaker Pro) as possible.

If you find any mistakes in this manual or have a suggestion please let us know. We appreciate your feedback!

TIP You can get more information on returned error codes from the OSErrrs database on our web site:
<http://www.troi.com/software/oserrrs.html>. This free FileMaker database lists all error codes for Windows and Mac OS!

3

http://www.troi.com/support/
http://www.troi.com/software/oserrrs.html

What can this plug-in do?
The Troi Serial Plug-in adds serial functions to to FileMaker Pro. With this plug-in you can read and write to any serial port that is
available on your computer.

NOTE USB ports are not supported. USB is a bus protocol that can be used from various purposes and devices, like keyboards,
hard disks, CD-ROM drives, adaptors, cameras. All these devices need specific drivers. We have currently no plans to create a
USB plug-in. Note however that the Troi Serial Plug-in is reported to be working with the USB to Serial adapters.

Software requirements
System requirements for Mac OS
Mac OS X 10.4.5 or higher.

System requirements for Windows
Software Requirements: Windows 2000 (Service Pack 4), or Windows XP (Service Pack 2).

FileMaker Pro requirements
FileMaker Pro 7 or FileMaker Developer 7*.
FileMaker Pro 8.x or FileMaker Pro Advanced 8.x.
FileMaker Pro 9 or FileMaker Pro Advanced 9.
FileMaker Pro 10 or FileMaker Pro Advanced 10 or higher.

* NOTE Troi Serial Plug-in will probably run fine with FileMaker 7, but we have not tested this and we no longer
provide support for FileMaker 7. Also note that Troi File Plug-in, with older FileMaker versions, will probably run
on older operating systems for example Mac OS X 10.3.9 or Windows 2000, however we do not support this.

NOTE 2 Troi Serial Plug-in version 3.0 (and later) started using the native plug-in syntax introduced with FileMaker
Pro 7. This means that the functions of this plug-in have this format: FunctionName(parameter1 ; parameter2). This
native plug-in syntax makes it possible to support Unicode and more.

Troi Serial Plug-in version 3.1 does not run on versions prior to FileMaker Pro 7.0. If you need to run on versions prior to
FileMaker Pro 7: see our web site for the Troi Serial Plug-in 2.6 which is using the 'classic' plug-in API, which is using the
External("functionName" , "parameter") format. The 2.6 version runs on FileMaker 6, 5.x and 4.x.. See our web site here:

<http://www.troi.com/serialplugin.html>

FileMaker Server requirements and AutoUpdate
FileMaker Server 9 or FileMaker Server Advanced 9.
FileMaker Server 10 or FileMaker Server Advanced 10 or higher.

You can use FileMaker Server to serve databases that incorporate functions of the Troi Serial Plug-in (client-side): You need to
have the plug-in installed at the clients that use these functions.

The AutoUpdate feature of FileMaker Server 9 or 10 can help you automate installing and updating plug-ins automatically. We
created an example file and a tar formatted plug-in of Troi Serial Plug-in (only needed on Mac OS X) to get you started. Visit our
AutoUpdate web page to download the example:

<http://www.troi.com/software/autoupdate.html>

NEW Troi File Plug-in can now also be used by FileMaker Server as a server-side plug-in or as a plug-in used by
the web publishing engine. To use Troi Plug-ins as a server-side or web-side plug-in you may need to purchase a special
Server/Web license. More information can be found in the download or here:

 <http://www.troi.com/support/filemaker-server-side-plug-ins.html>

4

http://www.troi.com/serialplugin.html
http://www.troi.com/software/autoupdate.html
http://www.troi.com/support/filemaker-server-side-plug-ins.html

Getting started

Using external functions
The Troi Serial Plug-in adds new functions to the standard functions that are available in FileMaker Pro. The functions added by a
plug-in are called external functions. You can see those extra functions for all
plug-ins at the top right of the Specify Calculation dialog box:

You use special syntax with external functions: FunctionName(parameter1 ; parameter 2) where FunctionName is the name of an
external function. A function can have zero or more parameters. Each parameter is separated by a semi-colon. Plug-ins don't work
directly after installation. To access a plug-in function, you need to add the calls to the function in a calculation, for example in a
calculation in Define Fields or in a ScriptMaker Script.

Where to add the External Functions?
External functions for this plug-in are intended to be used in a Set Field script step using a calculation. For most functions of this
plug-in, it makes no sense to add them to a define field calculation, as the functions will have side effects. Only the
Serial_AsciiValueToText and Serial_TextToAsciiValue functions have no side effects and can be used in define field calculation.

5

Select External functions
to see all the plugins.

Plug-in names

External functions
shown here

An External
function

Simple example
We start with a simple example to get you started. Create a new database, with a global text field called gPortNames. Create a new
ScriptMaker Script called "Get Serial Port Names". Delete all steps and then add the following script step:

Set Field [gPortNames, Serial_GetPortNames("-Unused")]

This shows the call to the Serial_GetPortNames function. This function has only one parameter, switches, which is currently not
used, so "-Unused" is given as value. Performing this script will return all the serial ports that can be found on this computer,
separated by returns.

On Windows the result will be something like this:
COM1¶
COM2¶
COM3¶
COM4¶

NOTE Function names, like Serial_GetPortNames, are no longer case sensitive. You can type them or get them from the
External Functions list at the top right of the "Specify Calculation" dialog.

Please take a close look at the included example files, as they provide a great starting point. From there you can move on, using
the functions of the plug-in as building blocks. Together they give you great new tools to access serial ports!

Summary of functions

The Troi Serial Plug-in adds the following functions:

function name short description
Serial_Version checks for correct version of the plug-in. This function is also used to register the plug-in.
Serial_VersionAutoUpdate standard version number for AutoUpdate of FileMaker Server.

Serial_GetPortNames returns the names of all serial ports that are available on the computer
Serial_Open opens a serial port
Serial_Close closes a serial port
Serial_Receive receives data from a serial port
Serial_Send send data to a serial port

Serial_SetDispatchScript tell the plug-in which script to call when data is received
Serial_DataWasReceived returns if data was received on a open port

Serial_AsciiValueToText converts (one or more) ASCII values to the equivalent text
Serial_TextToAsciiValue converts a text string to a list of ASCII values
Serial_Control suspends and resumes input from a serial port
Serial_Debug troubleshoot the serial port and test scripting.

6

Steps for working with the Troi Serial Plug-in
Below you find an overview of the main steps needed to communicate with a serial port:

1 - Find available ports

Use the function “Serial_GetPortNames” to get the names of all serial ports that are available on the computer and let the end user
choose a port.

2 - Open the selected port

Use the function “Serial_Open” to open a port. Optionally use the function “Serial_SetDispatchScript” to specify which script is
triggered when data comes in from the Serial port.

3 - Communicate with the serial port

Use the functions “Serial_Send” and “Serial_Receive” to send and receive data to and from a serial port
You can use other functions, like “Serial_DataWasReceived” and “Serial_RestoreSituation” to help you get the data into a
FileMaker database.

4 - Close the serial port

At the end of the communication you need to close the serial port.

Specifying the port settings
Default port settings

A serial port can be configured in a lot of ways. These settings can be set by specifying the settings parameter of Serial_Open. If
you don't specify any settings the port is initialised to the following settings: a speed of 9600 baud, no parity, 8 data bits, 1 stop bit,
no handshaking. If you want to use this setting open the port like this:

Set Field[gErrorCode, Serial_Open("-Unused" ; "COM2")]

Specifying other port settings

It is recommended that you set the port settings explicitly. Give the settings by concatenating the desired settings keywords. You
specify them like this:

Set Field[gErrorCode, Serial_Open("-Unused" ;
 "COM2" ; "baud=9600 parity=none data=8 stop=10 flowControl=XOnXOff")]

You can set the speed, the parity, the number of data and stopbits, and the handshaking to use. Note that the order of the keywords
and case are ignored. All keywords are optional and should be separated by a space or a return.

7

Specifying the port speed

The port speed indicates how quick a the data is transported over the serial line.
Allowed values for the port speed are:

baud=1800
baud=2400
baud=3600
baud=4800

baud=7200
baud=9600
baud=14400
baud=19200

baud=28800
baud=38400
baud=57600

baud=115200
baud=230400

baud=150
baud=300
baud=600
baud=1200

NOTE Not all speeds may be supported on all serial ports. Check the documentation of the computer and the equipment you want
to connect.

You need to specify the same speed that the other equipment is using. Higher port speeds can result in loss of data if the serial
cable can't cope with this speed. If this happens try a lower speed.

Specifying the bit format options

Data over a serial port is sent in small packet of 4 to 10 bits. This packet consists of 4-8 data bits, followed by a parity bit and
stopbits.

Data bits
You can specify the number of the data bits by adding one of the datasize keywords to the switch parameter. The most used value
is 8 data bits. Allowed values for the number of data bits are:

data=4 data=5 data=6 data=7 data=8

Parity bits
You can specify the parity bit by giving adding one of the following keywords to the switch parameter:

parity=none parity=odd parity=even

Stop bits
You can specify the number of stopbits by giving adding one of the following keywords to the switch parameter:

stop=10 stop=15 stop=20

Here stop=10 means 1 stop bit, stop=15 means 1.5 stopbit and stop=20 means 2 stopbits.

8

Specifying the handshaking options
Handshaking is a way to ensure that the transfer of data can be stopped temporarily. This also called (data) flow control. A serial
port can use hardware handshaking and software handshaking. For hardware handshaking to work the serial cable must have wires
to support it.

Using the Serial_Open function this plug-in allows a basic way to set the handshaking and also an advanced way, which gives
more options, but most users probably don't need.

Basic handshaking options

Basic handshaking has 3 keywords:

flowControl=DTRDSR flowControl=RTSCTS flowControl=XOnXOff

You can specify one or more of these flow control keywords. You should specify at least one of these keywords. Try
flowControl=DTRDSR as this is mostly supported. FlowControl=DTRDSR and flowControl=RTSCTS are hardware handshaking
options, for which you need proper cabling. FlowControl=XOnXOff is a software based handshake option.

FlowControl=DTRDSR means that the signal DTR is used for input flow control and DSR for output flow control.
FlowControl=RTSCTS means that the signal RTS is used for input flow control and CTS for output flow control.
FlowControl=XOnXOff uses a XOff character (control-S) and a XOn character (control-Q) to stop input and output flow.

IMPORTANT Do not use FlowControl=XOnXOff if you want to transfer binary data, like pictures. This protocol uses two ASCII
characters that might also be in the binary data. FlowControl=XOnXOff works fine with normal text.

Example 1

Set Field[gErrorCode, Serial_Open("-Unused" ;
 "COM2" ; "baud=9600 parity=none data=8 stop=10 flowControl=DTRDSR")]

This will set the port to use DTR/DSR hardware handshaking.

Example 2

Set Field[gErrorCode, Serial_Open("-Unused" ;
 "COM2" ; "baud=9600 parity=none data=8 stop=10 flowControl=DTRDSR

flowControl=RTSCTS flowControl=XOnXOff")]

This will set the port to use all 3 types of handshaking in parallel.

9

Advanced handshaking options

Advanced handshaking options allows you more control over the serial port settings. It enables you to set the handshaking of the
output an input separately.

With advanced handshaking you can use the following keywords:

keyword meaning
inputControl=XOnXOff use XOnXOff for input handshaking
outputControl=XOnXOff use XOnXOff for output handshaking

inputControl=RTS use RTS for input handshaking
outputControl=CTS use CTS for output handshaking

inputControl=DTR use DTR for input handshaking
outputControl=DSR use DSRfor output handshaking

DTR=enabled set DTR signal permanent to high
DTR=disabled set DTR signal permanent to low
RTS=enabled set RTS signal permanent to high
RTS=disabled set RTS signal permanent to low

Below you find how the basic handshaking keywords relate to the advanced handshaking keywords:

basic keyword = the same as 2 advanced keywords
flowControl=XOnXOff = inputControl=XOnXOff outputControl=XOnXOff
flowControl=RTSCTS = inputControl=RTS outputControl=CTS
flowControl=DTRDSR = inputControl=DTR outputControl=DSR

The other advanced keywords don't have a equivalent.

NOTE You can mix the basic handshaking keywords with the advanced handshaking keywords, as long as this is sensible.

Example 1

If you want to use DTR handshaking for input flow control and CTS for output flow control use the following settings to open
COM1:

Set Field[gErrorCode, Serial_Open("-Unused" ; "COM2" ;
"baud=9600 parity=none data=8 stop=10 outputControl=CTS inputControl=DTR")]

Example 2

If you want to enable the DTR signal and use XOnXOff input flow control use the following settings to open COM1:

Set Field[gErrorCode, Serial_Open("-Unused" ; "COM2" ;
"baud=9600 parity=none data=8 stop=10 DTR=enabled inputControl=XOnXOff")]

Example 3

Set Field[gErrorCode, Serial_Open("-Unused" ; "COM2" ;
"baud=9600 data=7 parity=odd stop=20 flowControl=XOnXOff outputControl=CTS inputControl=DTR")]

This shows that XOnXOff is used for input and output flow control and also DTR handshaking for input flow control and CTS for
output flow control.

10

Receiving data via script triggering
The Plug-in API for FileMaker Pro 7 and later has an official way to trigger scripts (or dispatch scripts). It is now possible on all
platforms to trigger scripts by filename and scriptname. The 3.x version of the Serial Plug-in implements this triggering. Other
ways of triggering are no longer needed.

Functions to implement Dispatch Scripting

The following external functions help in achieving the receiving of data via the Dispatch Script.

........Serial_SetDispatchScript tell the plug-in which (Dispatch) script to trigger when data is received

........Serial_DataWasReceived returns the name of the port when data was received on a open port

The following function is no longer needed, and is no longer present in Troi Serial Plug-in 3.0:
........Serial-RestoreSituation

TIP See the example file Terminal.fp7 for a working example.

Dispatch Scripting using Script Name
This method will trigger a script when data is received, one of the open ports. Usually you set the dispatch script once after you
have opened the serial port(s).

Example "Set Dispatch Script with name"

Below you find a sample Set Dispatch Script:

Set Field [gErrorCode, Serial_SetDispatchScript("-Unused" ; "" ;
Get(FileName) ; "Process Data Received")]

If [Left(gErrorCode, 2) = "$$"]
Beep
Show Message [An error occurred while setting the dispatch script]
Halt Script

End If

This tells the plug-in to trigger the script Process Data Received whenever incoming data from (one of) the serial port(s) is
available. In the script Process Data Received you can retrieve the incoming data, and store it, and do any other processing.

Dispatch Scripting for a specific port
This plug-in also can trigger different scripts different open ports. This is done with the Serial_Open function. This is how this can
be done:

Example Dispatch Script for specific port

Below you find a sample "To Menu" Dispatch Script:

Set Field [gErrorCode, Serial_Open("-Unused" ; gPortName1 ; "baud=19200 parity=none" ;
Get(FileName) ; "Process Data Received for 1st Port")]

If [Left(gErrorCode, 2) = "$$"]
Beep
Show Message [An error occurred while opening the port]
Halt Script

End If

11

This script will open the port gPortName1 and will trigger script "Process Data Received for 1st Port". when data comes in on
this port. If both triggering with Serial_Open and also with Serial_SetDispatchScript has been specified the trigger script specified
with Serial_Open takes precedence.

Example Process Data Received Script

Below you find a sample "Process Data Received" script, which gets the data from the plug-in into the field
mesReceived.

Enter Browse Mode []
Set Field [gTempResultReceived, Serial_Receive("-Unused" ; gPortName)]
Set Field [mesReceived, mesReceived & gTempResultReceived]

Example "Set Dispatch Script" Script

Below you find a sample "Set Dispatch Script" Script:

Set Field [gErrorCode, Serial_SetDispatchScript('-Unused" ;
Get(FileName) & "MyTriggerScript")]

If [Left(gErrorCode, 2) = "$$"]
Beep
Show Message [An error occurred while setting the dispatch script]
Halt Script

End If

Example Start Receiving Script

Below you find a sample "Start Receiving" script:

Perform Script [Sub-scripts, "Open Serial Port"]
Perform Script [Sub-scripts, "Set Dispatch Script"]

When you want to begin receiving perform the "Start receiving script".

12

Script triggering on a Match String
The Serial plug-in can look for a special match string that has to arrive at the input buffer before the it triggers a script. When you
specify the dispatch script, you can add the waitstring parameter.

The script step below will set open a port with a dispatch script Process Data Received , which is only triggered after the
string OK is received in the input buffer.

Set Field [gErrorCode, Serial_SetDispatchScript("-Unused" ;
Get(FileName) &
"Process Data Received" &
"OK")]

The script step below will set a dispatch script Process Data Received , which is only triggered after a CR (carriage return)
character, followed by a LF (linefeed) character is received. These are the ASCII characters 0x0D and 0x0A respectively. (See the
ASCII Table in Appendix A)

Using the Serial_AsciiValueToText function we set the waitstring like this:

Set Field [gErrorCode, Serial_SetDispatchScript("-Unused" ;
Get(FileName) &
"Process Data Received" &
Serial_AsciiValueToText("-Unused", "OxOD Ox0A")]

There is no longer a length limitation on the waitstring..

Getting the last match string

It is also possible to get the last string of text that matches the match string. You specify this in the Serial_Receive function.

In ScriptMaker you need to have this script step:

Set Field [gResult, Serial_Receive("-GetLastMatch" ; "COM1" ;]

Example

We assume, like the example above, to be waiting for match "<CR><LF>" and this data comes in:

12345<CR><LF>
434343<CR><LF>
5678<CR><LF>
12

If we now run the Serial_Receive script step this data is received in the gResult field:

5678<CR><LF>

All earlier data is discarded.

13

Controlling input from the Serial Port
The function “Serial_Control” controls the serial port . With this function you can suspend or resume the incoming data. This
command is very useful for devices that send out continuous data, like an electronic weighing scale.

NOTE The buffer will be emptied when the port is suspended. So when you give the resume command only the data received
after this command will be received.

NOTE You can continue to send data to the serial port.

Example 1

Set Field[gResult, Serial_Control("-Suspend" , "Modem port")]

This will suspend the incoming stream of data from the Modem port.

Set Field[gResult, Serial_Control("-Resume" , "Modem port")]

This will resume the previously resumed incoming stream of data from the Modem port.

Example 2

Say you have an electronic weighing scale that sends data to the serial port continuously. The data is in this form:
1200 kg net CR LF
1199 kg net CR LF
1200 kg net CR LF
1200 kg net CR LF
etc...

You are only interested in this data when you are actually weighing something. So the best way to handle this is to open the serial
port and then suspend this port. When you want to measure something you send a resume command, and gather a full line of data,
the suspend the port again.

You need to define these fields:

gPortName global text field, to hold the port name
gErrorCode global text field, to hold the error code in
weight number field, to store the weight

When starting up the database you issue these commando in a startup script:

Set Field[gPortName,"COM2"]
Set Field[gErrorCode, Serial_Open("-Unused" ; gPortName ; "baud=19200")]
If[gErrorCode = 0]

 Set Field[gErrorCode, Serial_Control("-Suspend" , gPortName)]
Endif

This will open the port and then wait till further notice.

14

When the user of the database presses a button you start this Measure Now script:

Set Field [gTempResultReceived, ""]
Set Field [gTempBuffer, ""]
Set Field [gNumber, 10]

Comment [Resume the incoming data...]
Set Field [gErrorCode, Serial_Control("-Resume" ; gPortName)]
If [gErrorCode = 0]
 Loop

Set Field [gTempResultReceived ; Serial_Receive("-Unused" ; gPortName)]
Set Field [gTempBuffer, gTempBuffer & gTempResultReceived]
Exit Loop If [PatternCount(gTempBuffer , "¶") >= 2 or gErrorCode <> 0]
Pause/Resume Script [0:00:01]
Set Field [gNumber, gNumber - 1]
If [gNumber = 0]

Set Field [gErrorCode, -1]
End If

 End Loop
 Set Field [gNumber, Serial_Control("-Suspend" ; gPortName)]
End If
Perform Script [Sub-scripts, Store Measure Results]

The Measure Now script resets the buffers, then resumes the incoming data. Inside the loop the data is received until there are 2
returns in the buffer, which means a complete line was received. The script then suspends the port again and then the script Store
Measure Results is called to store the results in a record.

To prevent this looping forever when no data is received we also use a counter, gNumber. It starts at 10 and is lowered every time
through the loop. After 10x the script gives up and an error code of -1 is set, to get out of the loop.

Here is the Store Measure Results script:

If [gErrorCode = 0 and PatternCount(gTempBuffer , "¶") >= 2]
New Record/Request
Comment [Cut off at the end of the line]
Set Field [gTempBuffer, Left(gTempBuffer,

Position(gTempBuffer, "¶", Length(gTempBuffer) , -1) - 1)]
Comment [Copy one line from the end...]
Set Field [Weight, Middle(gTempBuffer,

Position(gTempBuffer, "¶", Length(gTempBuffer) , -1) + 1, Length(gTempBuffer))]
Else

Beep
Show Message [An error occurred!]

End If

Go to Field []

This script will create a new record and find the last line in the buffer, and store it in the field Weight.

15

Function Reference
Serial_AsciiValueToText

Syntax Serial_AsciiValueToText(switches ; ASCIIvalues { ; separator })

Converts (one or more) numbers to their equivalent ASCII characters.

Parameters
switches these alter the behaviour of the function
ASCIIvalues one or more numbers in the range from 0-255 separated by a separator
separator (optional) the separator between the values, if you omit this parameter " " and | is used.

Switches can be empty or one of this:
-Encoding=Native (default) use Unicode encoding for the higher ASCII's 128-255
-Encoding=ASCII_Mac use Mac ASCII for the higher ASCII's 128-255 (as used in fmp 6)

Returned result

The converted ASCII text

Special considerations

You can also use hexadecimal notation for the numbers. Use 0x00...0xFF to indicate hexadecimal notation.
The graphic rendition of characters greater than 127 is undefined in the American Standard Code for Information Interchange
(ASCII Standard) and varies from font to font and from computer to computer and may look different when printed.
Values higher than 255 are ignored.

Renamed from Serial-ToASCII function of Serial Plug-in 2.5.

Example usage

Set Field [text, Serial_AsciiValueToText ("-Unused" ; "65 65 80 13")]
or
Set Field [text, Serial_AsciiValueToText ("-Unused" ; "65|65|80|13")]

This will both result in the text "AAP<CR>" where <CR> is a Carriage Return character

Example 2

Set Field [text, Serial_AsciiValueToText("-Encoding=ASCII_Mac" ; "0x31-0x32-0x33-0x0D-0x0A" ; "-")]

This will result in the text "123<CR><LF>" where <CR> is a Carriage Return character and <LF> is a Line Feed
character.

16

Serial_Close

Syntax Serial_Close(switches ; portname)

Closes a serial port with the specified name.

Parameters
switches not used, reserved for future use. Leave blank or put "-Unused"
portname the name of the port to close

Returned result

The returned result is an error code:
 0 (no error) the port was closed
 $$-4210 (portDoesnotExistErr) port is not available on this computer
 $$-4211 (AllPortsNullErr) no serial ports are available on this computer
 $$-108 (memFullErr) ran out of memory

Other errors may be returned.

Special considerations

If the portname parameter is "" all ports are closed.

Example usage

This will close the COM3 port:
Set Field[gErrorCode, Serial_Close("-Unused" ; "COM3")]

Example 2

This will close all open ports:
Set Field[gErrorCode, Serial_Close("-Unused" ; "")]

17

Serial_Control

Syntax Serial_Control(switches ; portname)

Controls the serial port with the specified name . The port needs to be opened first (See also Serial_Open).

Parameters
switches the action that needs to be done.
portname the name of the port to control

Switches can be either:
-Suspend This will suspend reading the incoming stream of data.
-Resume This will resume reading the incoming stream of data.

Returned result

The returned result is an error code. An error always starts with 2 dollars, followed by the error code. You should always
check for errors when sending by testing if the first two characters are dollars. Returned error codes can be:

0 no error the data was send
$$-28 notOpenErr the port is not open
$$-50 paramErr there was an error with the parameter

Other errors may be returned.

Special considerations

The buffer will be emptied when the port is suspended. So when you resume only the data received after you resume will be
available. While suspended you can still send data to the serial port.

This function is very useful for devices that send out continuous data, like an electronic weighing scale.

Example usage

Set Field[gResult, Serial_Control("-Suspend" ; "COM1")]

This will suspend the incoming stream of data.

Example 2

for devices that send out continuous data, like an electronic weighing scale, you open the port and suspend the incoming
data. Then when you want a reading you resume the incoming stream. The script will be like this:

Set Field[gErrorCode, Serial_Open("-Unused" ; gPortName)]
Set Field[gErrorCode, Serial_Control("-Suspend" ; gPortName)]
do other stuff here, until you need data from the device ...
Set Field[gErrorCode, Serial_Control("-Resume" ; gPortName)]
read data until you got the expected data:
Set Field[gErrorCode, Serial_Read("-Unused" ; gPortName)]
This will suspend reception of data from the port in field gPortName:
Set Field[gErrorCode, Serial_Control("-Suspend" ; gPortName)]

18

Serial_DataWasReceived

Syntax Serial_DataWasReceived(switches)

Returns the name of the port when data was received on a serial port. Use this function to see if this is an event that needs
to be handled.

Parameters
switches determines what is returned

 Switches currently needs to be:
 -FirstPortname return the name of the first port for which data was received

Returned result

The returned result is either:
"" no data received
"portname" data was received in the buffer for this port

Special considerations

When this function returns something else than "" you can get the data with the function Serial_Receive.

Example usage

Set Field [gPortname , Serial_DataWasReceived(" -FirstPortname ")]
If[gPortname = "COM1"]

Perform Script [Sub-scripts, “Process Data Received COM1"]
Else

... do something else
End If

19

Serial_Debug

Syntax Serial_Debug(switches)

Use this function to troubleshoot the serial port and test scripting.

Parameters
switches determine the behaviour of the function

switches can be one of this:
 -BeepWhenDataArrives the plug-in will beep when data arrives at the serial port
 -BeepOff the plug-in no longer beeps when data arrives at the serial port
 -TestTriggerScript the plug-in will trigger the dispatch script with some test data

Returned result

If successful it returns 0. If unsuccessful it returns an error code starting with $$ and the error code. Possible error codes are:

$$-28 notOpenErr make sure you have opened a port and specified a dispatch script
$$-50 paramErr there was an error with the parameter (an unknown switch was given)

Other errors may be returned.

Special considerations

To be able to test the trigger script the serial port must be opened an a dispatch script must be specified.

See the Debug.fp7 example file.

Example usage

Set Field [gErrorCode, Serial_Debug("-BeepWhenDataArrives")]

The plug-in will now beep when data arrives at the serial port. If data keeps on coming in the plug-in will beep every 2
seconds.

How to test if data comes in:
- Set the plug-in to beep if data comes in.
- Get the device attached to the serial port to send data to the serial port.
- When you hear beeps you know data is arriving at the serial port and in the plug-in.
- To stop the beeping use this command:

Set Field [gErrorCode, Serial_Debug("-BeepOff")]

Example 2

Serial_Debug("-TestTriggerScript") will trigger the dispatch script after 10 seconds.

20

Serial_GetPortNames

Syntax Serial_GetPortNames(switches)

Returns the names of all serial ports that are available on the computer.

Parameters
switches not used, reserved for future use. Leave blank or put "-Unused"

Returned result

The returned result is a list of serial ports that are available on the computer that is running FileMaker Pro. Each available
port is on a different line. On Mac OS X a result can be for example:

Internal Modem
Bluetooth-Modem

On Windows the result will be for example:
COM2
COM4

Use this function to let the user of the database choose which port to open. Store the name of the chosen port in a global
field. You can then check the next time the database is opened whether the portname is still present and ask the user if he
wants to change his preference.

If an error occurs an error code is returned. Returned error codes can be:
$$-108 memFullErr Ran out of memory

Other errors may be returned.

Special considerations

Starting with version 2.9 the plug-in will now detect all existing serial ports on Windows, instead of always returning with
COM1...COM4.

Example usage

Set Field [result, Serial_GetPortNames("")]

This returns the names of the serial ports available. On our Intel Mac with a Keyspan USB to serial adaptor installed, this
resulted is this list:

KeySerial1
USA28X1d1P1.1
USA28X1d1P2.2
Bluetooth-PDA-Sync
BlueSerialPort-2
Bluetooth-Modem

The first 3 ports are supplied by the Keyspan adaptor. The last 3 ports are serial ports over a Bluetooth wireless connection.
To be able to use this you need proper Bluetooth hardware.

On windows the names of the ports might be:
COM2
COM3
COM4

21

Serial_GetPortNames

Syntax Serial_GetPortNames(switches)

Returns the names of all serial ports that are available on the computer.

Parameters
switches not used, reserved for future use. Leave blank or put "-Unused"

Returned result

The returned result is a list of serial ports that are available on the computer that is running FileMaker Pro. Each available
port is on a different line. On Mac OS X a result can be for example:

Internal Modem
Bluetooth-Modem

On Windows the result will be for example:
COM2
COM4

Use this function to let the user of the database choose which port to open. Store the name of the chosen port in a global
field. You can then check the next time the database is opened whether the portname is still present and ask the user if he
wants to change his preference.

If an error occurs an error code is returned. Returned error codes can be:
$$-108 memFullErr Ran out of memory

Other errors may be returned.

Special considerations

Starting with version 2.9 the plug-in will now detect all existing serial ports on Windows, instead of always returning with
COM1...COM4.

Example usage

Set Field [result, Serial_GetPortNames("")]

This returns the names of the serial ports available. On our Intel Mac with a Keyspan USB to serial adaptor installed, this
resulted is this list:

KeySerial1
USA28X1d1P1.1
USA28X1d1P2.2
Bluetooth-PDA-Sync
BlueSerialPort-2
Bluetooth-Modem

The first 3 ports are supplied by the Keyspan adaptor. The last 3 ports are serial ports over a Bluetooth wireless connection.
To be able to use this you need proper Bluetooth hardware.

On windows the names of the ports might be:
COM2
COM3
COM4

22

Serial_Open

Syntax Serial_Open(switches ; portname ; settings ; filename ; scriptname)

Opens a serial port with this name and the specified parameters.

Parameters
switches (optional) specifies how this function receives the data
portname the name of the port to open
settings (optional) specifies the setting of the port like the speed of the port, parity, etc.
filename (optional) the name of the file which contains the script to trigger when data comes in
scriptname (optional) specifies the name of the script to trigger when data comes in

switches can be one of this:
-ResumeWhenScriptPaused when the trigger script needs to run, and an other script is already paused, the
paused script will resume after the triggerscript is finished.
-NoIdleWaitTime don't add idle wait times, the triggering will be faster, but the plug-in will need more
computer time.

Returned result

Returned result is an error code:
0 no error
$$-50 (paramErr) there was an error with the parameter
$$-108 (memFullErr) ran out of memory
$$-97 (portInUse) could not open port, the port is in use
$$-4210 (portDoesnotExistErr) port with this name is not available on this computer
$$-4211 (allPortsNullErr) no serial ports are available on this computer

Other errors may be returned.

Special considerations

If you specify a filename and scriptname any scripts specified with the function "Serial_SetDispatchScript" will be ignored
for this port.

If you specify a filename you also must provide a scriptname.

Windows only: if you have more than 4 ports, you might get error $$-4210. In this case call
Serial_GetPortNames("-portCount=8") first. You can also use a different count.

Example usage

Set Field[gErrorCode, Serial_Open("-Unused" ; "COM2; "baud=19200 parity=none
 data=8 stop=10 flowControl=DTRDSR flowControl=RTSCTS")]

will open the COM2 port with a speed of 19200 baud and the specified options.

Example 2

Set Field[gErrorCode,
Serial_Open("-Unused" ; gPortName1 ;

gSpeed & " " & gStopBits & " " & gDataBits & " " & gParity & " "& gFlowControl ;
Get(FileName) ;
"Process Data Received for 1st Port"
)

]

This will open the port in field gPortName1with the specified speed and other options. When data comes in the script
"Process Data Received for 1st Port" in the current filename will be triggered.

23

Serial_Open

Syntax Serial_Open(switches ; portname ; settings ; filename ; scriptname)

Opens a serial port with this name and the specified parameters.

Parameters
switches (optional) specifies how this function receives the data
portname the name of the port to open
settings (optional) specifies the setting of the port like the speed of the port, parity, etc.
filename (optional) the name of the file which contains the script to trigger when data comes in
scriptname (optional) specifies the name of the script to trigger when data comes in

switches can be one of this:
-ResumeWhenScriptPaused when the trigger script needs to run, and an other script is already paused, the
paused script will resume after the triggerscript is finished.
-NoIdleWaitTime don't add idle wait times, the triggering will be faster, but the plug-in will need more
computer time.

Returned result

Returned result is an error code:
0 no error
$$-50 (paramErr) there was an error with the parameter
$$-108 (memFullErr) ran out of memory
$$-97 (portInUse) could not open port, the port is in use
$$-4210 (portDoesnotExistErr) port with this name is not available on this computer
$$-4211 (allPortsNullErr) no serial ports are available on this computer

Other errors may be returned.

Special considerations

If you specify a filename and scriptname any scripts specified with the function "Serial_SetDispatchScript" will be ignored
for this port.

If you specify a filename you also must provide a scriptname.

Windows only: if you have more than 4 ports, you might get error $$-4210. In this case call
Serial_GetPortNames("-portCount=8") first. You can also use a different count.

Example usage

Set Field[gErrorCode, Serial_Open("-Unused" ; "COM2; "baud=19200 parity=none
 data=8 stop=10 flowControl=DTRDSR flowControl=RTSCTS")]

will open the COM2 port with a speed of 19200 baud and the specified options.

Example 2

Set Field[gErrorCode,
Serial_Open("-Unused" ; gPortName1 ;

gSpeed & " " & gStopBits & " " & gDataBits & " " & gParity & " "& gFlowControl ;
Get(FileName) ;
"Process Data Received for 1st Port"
)

]

This will open the port in field gPortName1with the specified speed and other options. When data comes in the script
"Process Data Received for 1st Port" in the current filename will be triggered.

24

Serial_Receive

Syntax Serial_Receive(switches ; portname)

Receives data from a serial port with the specified name . The port needs to be opened first (See Serial_Open). If no data is
available an empty string is returned: "".

Parameters
switches (optional) specifies how this function receives the data
portname the name of the port to receive data from

switches can be left empty or can be:
-GetLastMatch get the last string of text that matches the match string

Returned result

The returned result is the data received or an error code. An error always starts with 2 dollars, followed by the error code.
You should always check for errors when receiving by testing if the first two characters are dollars.

Returned error codes can be:

$$-28 notOpenErr The port is not open
$$-108 memFullErr Ran out of memory
$$-50 paramErr There was an error with the parameter
$$-4210 portDoesnotExistErr Port with this name is not available on this computer
$$-4211 allPortsNullErr No serial ports are available on this computer
$$-207 notEnoughBufferSpace The input buffer is full

Other errors may be returned.

Special considerations

The plug-in will get any data that is received at the time the function is called. This might not be all data coming in. You
might need to wait and append new data coming in at a later time.

When you use the -GetLastMatch switch the last matching string of text is returned. Older text is discarded.

Please be aware that only the ASCII characters 0...255 will be received, as a serial port uses 8 bit characters.

Example usage

Set Field[gResult, Serial_Receive("-Unused" ; "SerialPort1")]

This will receive data from the SerialPort1. It might return "All the world is a sta". If you call it again later new data may
have come in and the result might be "ge and we are merely players." It is best to concatenate the data coming in.

Example 2

Below you find a "Receive Data" script for receiving data into a global text field gTempResultReceived. The script tests for

errors.

We assume that in your FileMaker file the following fields are defined:
 gPortName Global, text, contains the name of the previously opened port
 gTempResultReceived Global, text
 gTotalResult Global, text, can also be a normal text field

In ScriptMaker add the following script steps:

Set Field [gTempResultReceived, Serial_Receive("-Unused" ; gPortName)]
If [Left(gTempResultReceived, 2) = "$$"]

Beep
If [gTempResultReceived = "$$-28"]

Show Message [Open the port first]
Else

If [gTempResultReceived = "$$-207"]
Show Message [Buffer overflow error.]

Else
Show Message [An error occurred!]

End If
End If
Halt Script

Else
no error, so concatenate the data somewhere and do your stuff.
Set Field [gTotalResult , gTotalResult & gTempResultReceived]

 # add your own steps here ...
End If

25

Serial_Receive

Syntax Serial_Receive(switches ; portname)

Receives data from a serial port with the specified name . The port needs to be opened first (See Serial_Open). If no data is
available an empty string is returned: "".

Parameters
switches (optional) specifies how this function receives the data
portname the name of the port to receive data from

switches can be left empty or can be:
-GetLastMatch get the last string of text that matches the match string

Returned result

The returned result is the data received or an error code. An error always starts with 2 dollars, followed by the error code.
You should always check for errors when receiving by testing if the first two characters are dollars.

Returned error codes can be:

$$-28 notOpenErr The port is not open
$$-108 memFullErr Ran out of memory
$$-50 paramErr There was an error with the parameter
$$-4210 portDoesnotExistErr Port with this name is not available on this computer
$$-4211 allPortsNullErr No serial ports are available on this computer
$$-207 notEnoughBufferSpace The input buffer is full

Other errors may be returned.

Special considerations

The plug-in will get any data that is received at the time the function is called. This might not be all data coming in. You
might need to wait and append new data coming in at a later time.

When you use the -GetLastMatch switch the last matching string of text is returned. Older text is discarded.

Please be aware that only the ASCII characters 0...255 will be received, as a serial port uses 8 bit characters.

Example usage

Set Field[gResult, Serial_Receive("-Unused" ; "SerialPort1")]

This will receive data from the SerialPort1. It might return "All the world is a sta". If you call it again later new data may
have come in and the result might be "ge and we are merely players." It is best to concatenate the data coming in.

Example 2

Below you find a "Receive Data" script for receiving data into a global text field gTempResultReceived. The script tests for

errors.

We assume that in your FileMaker file the following fields are defined:
 gPortName Global, text, contains the name of the previously opened port
 gTempResultReceived Global, text
 gTotalResult Global, text, can also be a normal text field

In ScriptMaker add the following script steps:

Set Field [gTempResultReceived, Serial_Receive("-Unused" ; gPortName)]
If [Left(gTempResultReceived, 2) = "$$"]

Beep
If [gTempResultReceived = "$$-28"]

Show Message [Open the port first]
Else

If [gTempResultReceived = "$$-207"]
Show Message [Buffer overflow error.]

Else
Show Message [An error occurred!]

End If
End If
Halt Script

Else
no error, so concatenate the data somewhere and do your stuff.
Set Field [gTotalResult , gTotalResult & gTempResultReceived]

 # add your own steps here ...
End If

26

Serial_Reinitialize

Syntax Serial_Reinitialize(switches)

Tell the plug-in to re-initialize itself and look which serial ports are available on the system now.

Parameters
switches not used, reserved for future use. Leave blank or put "-Unused"

Returned result

If successful it returns 0. If unsuccessful it returns an error code starting with $$ and the error code. Possible error codes are:

$$-4211 kErrAllPortNull no serial ports found

Other errors may be returned in the future.

Special considerations

This function will close all ports first. Then the plug-in looks again for available ports.

You can use this function when new or different serial ports are added dynamically, for example if you plug-in a USB To
Serial adapter.

Example usage

Set Field [gErrorCode, Serial_Reinitialize("")]

27

Serial_Send

Syntax Serial_Send(switches ; portname ; data)

Sends data to the serial port with the specified name . The port needs to be opened first (See also Serial_Open).

Parameters
switches not used, reserved for future use. Leave blank or put "-Unused"
portname the name of the port to send data to
data the text data that is to be sent to the serial port

Returned result

The returned result is an error code. An error always starts with 2 dollars, followed by the error code. You should always
check for errors when sending by testing if the first two characters are dollars.

Returned error codes can be:
0 no error the data was send
$$-28 notOpenErr The port is not open
$$-108 memFullErr Ran out of memory
$$-50 paramErr There was an error with the parameter
$$-4210 portDoesnotExist A port with this name is not available on this computer
$$-4211 allPortsNullErr No serial ports are available on this computer
$$-207 notEnoughSpace The output buffer is full

Other errors may be returned.

Special considerations

Make sure you use a text field for the data. Other field types, like containers are currently not supported.

Please be aware that only the ASCII characters 0...255 will be transmitted, as a serial port wants 8 bit characters.

Example usage

Serial_Send("-Unused" ; "Modem port" ; "So long")]

This will send the string " So long" to the Modem port.

Set Field[gResult, Serial_Send("-Unused" ; gPortName ; textToSend)]

This will send the text in the field textToSend to the port in the field gPortName.

Example 2

Below you find a "Send Data" script for sending data from a global text field gTempResultReceived. The script tests for
errors.

We assume that in your FileMaker file the following fields are defined:
 gPortName Global, text, contains the name of the previously opened port
 gTextToSend Global, text, can also be a normal text field
 gErrorCode Global, text

In ScriptMaker add the following script steps:

Set Field [gErrorCode, Serial_Send("-Unused" ; gPortName ; gTextToSend)]
If [Left(gErrorCode, 2) = "$$"]

Beep
If [gErrorCode = "$$-28"]

Show Message [Open the port first]
Else

If [gErrorCode = "$$-207"]
Show Message [Buffer overflow error.]

Else
Show Message [An error occurred while sending!]

End If
End If
Halt Script

End If

28

Serial_Send

Syntax Serial_Send(switches ; portname ; data)

Sends data to the serial port with the specified name . The port needs to be opened first (See also Serial_Open).

Parameters
switches not used, reserved for future use. Leave blank or put "-Unused"
portname the name of the port to send data to
data the text data that is to be sent to the serial port

Returned result

The returned result is an error code. An error always starts with 2 dollars, followed by the error code. You should always
check for errors when sending by testing if the first two characters are dollars.

Returned error codes can be:
0 no error the data was send
$$-28 notOpenErr The port is not open
$$-108 memFullErr Ran out of memory
$$-50 paramErr There was an error with the parameter
$$-4210 portDoesnotExist A port with this name is not available on this computer
$$-4211 allPortsNullErr No serial ports are available on this computer
$$-207 notEnoughSpace The output buffer is full

Other errors may be returned.

Special considerations

Make sure you use a text field for the data. Other field types, like containers are currently not supported.

Please be aware that only the ASCII characters 0...255 will be transmitted, as a serial port wants 8 bit characters.

Example usage

Serial_Send("-Unused" ; "Modem port" ; "So long")]

This will send the string " So long" to the Modem port.

Set Field[gResult, Serial_Send("-Unused" ; gPortName ; textToSend)]

This will send the text in the field textToSend to the port in the field gPortName.

Example 2

Below you find a "Send Data" script for sending data from a global text field gTempResultReceived. The script tests for
errors.

We assume that in your FileMaker file the following fields are defined:
 gPortName Global, text, contains the name of the previously opened port
 gTextToSend Global, text, can also be a normal text field
 gErrorCode Global, text

In ScriptMaker add the following script steps:

Set Field [gErrorCode, Serial_Send("-Unused" ; gPortName ; gTextToSend)]
If [Left(gErrorCode, 2) = "$$"]

Beep
If [gErrorCode = "$$-28"]

Show Message [Open the port first]
Else

If [gErrorCode = "$$-207"]
Show Message [Buffer overflow error.]

Else
Show Message [An error occurred while sending!]

End If
End If
Halt Script

End If

28

Serial_SetDispatchScript

Syntax Serial_SetDispatchScript(switches ; portname ; filename ; scriptname ; waitstring)

Sets the script to trigger when data is received. If you give an empty filename parameter "", the dispatch script is removed.

Parameters
switches modifies how this function behaves
portname (optional) the name of the serial port to be coupled to this trigger script. If you leave this empty
the trigger script applies to all ports.
filename the name of the file with the Dispatch Script
scriptname the name of the script to be triggered
waitstring (optional) wait for a string of characters before triggering a script.

switches can be one of this:
-ResumeWhenScriptPaused when a trigger script needs to run, and an other script is already paused, the
paused script will resume after the triggerscript is finished.

Returned result

The returned result is an error code. An error always starts with 2 dollars, followed by the error code. You should always
check for errors. Returned error codes can be:

0 no error the Dispatch Script was set
$$-50 paramErr There was an error with the parameter

Other errors may be returned.

Special considerations

See also the User Manual under Dispatch Scripting for more details.
If the filename parameter is empty the dispatch script is removed, and the plug-in will no longer trigger. Note that this
will only remove the general port trigger.

Example usage

Set Field[gErrorCode, Serial_SetDispatchScript("-Unused" ; "" ;
Get(FileName) ; "Read Script" ; "OK")]

This will set the Dispatch Script for all ports to the script "Read Script" of the current file. The script will not be triggered
before the string "OK" is found.

Set Field[gErrorCode, Serial_SetDispatchScript("-Unused" ; "COM2" ; Get(FileName) ; "TriggerScriptCOM2" ;]

This will set the Dispatch Script for the COM2 port to the script "TriggerScriptCOM1" of the current file.

Example 2

Set Field[gErrorCode, Serial_SetDispatchScript("-Unused" ; "" ; "")]

This will reset all the dispatch scripts. Although the incoming data is buffered, no action is taken when data is received.

You can still get the data out by calling the Serial_Receive() function. 30

Serial_SetDispatchScript

Syntax Serial_SetDispatchScript(switches ; portname ; filename ; scriptname ; waitstring)

Sets the script to trigger when data is received. If you give an empty filename parameter "", the dispatch script is removed.

Parameters
switches modifies how this function behaves
portname (optional) the name of the serial port to be coupled to this trigger script. If you leave this empty
the trigger script applies to all ports.
filename the name of the file with the Dispatch Script
scriptname the name of the script to be triggered
waitstring (optional) wait for a string of characters before triggering a script.

switches can be one of this:
-ResumeWhenScriptPaused when a trigger script needs to run, and an other script is already paused, the
paused script will resume after the triggerscript is finished.

Returned result

The returned result is an error code. An error always starts with 2 dollars, followed by the error code. You should always
check for errors. Returned error codes can be:

0 no error the Dispatch Script was set
$$-50 paramErr There was an error with the parameter

Other errors may be returned.

Special considerations

See also the User Manual under Dispatch Scripting for more details.
If the filename parameter is empty the dispatch script is removed, and the plug-in will no longer trigger. Note that this
will only remove the general port trigger.

Example usage

Set Field[gErrorCode, Serial_SetDispatchScript("-Unused" ; "" ;
Get(FileName) ; "Read Script" ; "OK")]

This will set the Dispatch Script for all ports to the script "Read Script" of the current file. The script will not be triggered
before the string "OK" is found.

Set Field[gErrorCode, Serial_SetDispatchScript("-Unused" ; "COM2" ; Get(FileName) ; "TriggerScriptCOM2" ;]

This will set the Dispatch Script for the COM2 port to the script "TriggerScriptCOM1" of the current file.

Example 2

Set Field[gErrorCode, Serial_SetDispatchScript("-Unused" ; "" ; "")]

This will reset all the dispatch scripts. Although the incoming data is buffered, no action is taken when data is received.

You can still get the data out by calling the Serial_Receive() function.

31

Serial_TextToAsciiValue

Syntax Serial_TextToAsciiValue(switches ; text { ; separator })

Converts text to (one or more) a list of ASCII values.

Parameters
switches these alter the behaviour of the function
text the text to convert
separator (optional) the separator between the values, if you omit this parameter " " is used.

Switches can be empty or one of this:
-Encoding=Native (default) use Unicode encoding for the higher ASCII's 128-255
-Encoding=ASCII_DOS use OEM DOS ASCII for the higher ASCII's 128-255
-Encoding=ASCII_Windows use Ansi Windows ASCII for the higher ASCII's 128-255
-Encoding=ASCII_Mac use Mac ASCII for the higher ASCII's 128-255 (as used in fmp 6)

Returned result

one or more ASCIIvalues (in the range from 0-255) separated by spaces
if a character is out of range a ? (question mark) is returned on the place of the character

Special considerations

The graphic rendition of characters greater than 127 is undefined in the American Standard Code for Information Interchange
(ASCII Standard) and varies from font to font and from computer to computer and may look different when printed.

Example usage

Say you have a text "AAP<CR>", where <CR> is a Carriage Return character. Then call the function like this:
 Serial_TextToAsciiValue ("-unused" ; "AAP<CR>")
This will result in "65 65 80 13"

Set Field [text, Serial_TextToAsciiValue ("-unused" ; "AAP<CR>"; ",")] , where <CR> is a Carriage Return character.
This will result in "65,65,80,13".

32

Serial_Version

Syntax Serial_Version(switches)

Use this function to see which version of the plug-in is loaded.
Note: This function is also used to register the plug-in.

Parameters
switches determine the behaviour of the function

switches can be one of this:
-GetVersionString the version string is returned (default)
-GetVersionNumber Returns the version number of the plug-in
-ShowFlashDialog Shows the Flash Dialog of the plug-in (returns 0)

If you leave the parameter empty the version string is returned.

Returned result

The function returns "" if this plug-in is not loaded. If the plug-in is loaded the result depends on the input parameter. It is
either a:

-GetVersionString:
If you asked for the version string it will return for example "Serial Plug-in 3.0"

-GetVersionNumber:
If you asked for the version number it returns the version number of the plug-in x1000. For example version 3.0 will
return number 3000.

-ShowFlashDialog:
This will show the flash dialog and then return the error code 0.

Special considerations

Important: always use this function to determine if the plug-in is loaded. If the plug-in is not loaded use of external
functions may result in data loss, as FileMaker will return a question mark from any external function that is not loaded.

Example usage

Serial_Version("") will for example return "Serial Plug-in 3.0"

Example 2

Serial_Version("-GetVersionNumber") will return 3000 for version 3.0
Serial_Version("-GetVersionNumber") will return 3510 for a possible future version 3.5.1

So for example to use a feature introduced with version 3.0 test if the result is equal or greater than 3000.

33

Serial_VersionAutoUpdate

Syntax Serial_VersionAutoUpdate

Use this function to see which version of the plug-in is loaded, formatted for FileMaker Server's AutoUpdate function.
Returns 8 digit number to represent an AutoUpdate version.

Parameters
none

Returned result

The function returns ? if this plug-in is not loaded. If the plug-in is loaded the result is a version number, it is returned in
the format aabbccdd where every letter represents a digit of the level, so versions can be easily compared.

Special considerations

The Serial_VersionAutoUpdate function is part of an emerging standard for FileMaker plug-ins of third party vendors of
plug-ins. The version number can be easily compared, when using the Autoupdate functionality of FileMaker Server.

Example usage

Serial_VersionAutoUpdate will return 03010000 for version 3.1
Serial_VersionAutoUpdate will return 03060203 for version 3.6.2.3

So for example to use a feature introduced with version 3.1 test if the result is equal or greater than 03010000.

34

Appendix A: ASCII Table
Char........Dec........ Hex......... Control....... Description
NUL....... 0.............0x00........^@..............null (end of C string)
SOH....... 1.............0x01........^A...............start of heading
STX........2.............0x02........^B...............start of text
ETX........3.............0x03........^C...............end of text
EOT........4.............0x04........^D...............end of transmission
ENQ....... 5.............0x05........^E............... enquiry
ACK.......6.............0x06........^F............... acknowledge
BEL........7.............0x07........^G...............bell
BS.......... 8.............0x08........^H...............backspace
TAB....... 9.............0x09........^I................ horizontal tab
LF...........10...........0x0A.......^J................ line feed
VT.......... 11...........0x0B....... ^K...............vertical tab
FF...........12...........0x0C....... ^L............... form feed
CR.......... 13...........0x0D.......^M..............carriage return
SO.......... 14...........0x0E....... ^N...............shift out
SI............15...........0x0F....... ^O...............shift in
DLE........16...........0x10........^P............... data line escape
DC1........17...........0x11........^Q...............device control 1 (X-ON)
DC2........18...........0x12........^R...............device control 2
DC3........19...........0x13........^S............... device control 3 (X-OFF)
DC4........20...........0x14........^T............... device control 4
NAK.......21...........0x15........^U...............negative acknowledge
SYN....... 22...........0x16........^V...............synchronous idle
ETB........23...........0x17........^W..............end transmission block
CAN.......24...........0x18........^X...............cancel
EM......... 25...........0x19........^Y...............end of medium
SUB........26...........0x1A....... substitute
ESC........ 27...........0x1B....... ^[................ escape
FS...........28...........0x1C....... ^\................ file separator
GS.......... 29...........0x1D.......^]................ group separator
RS.......... 30...........0x1E....... ^^................record separator
US.......... 31...........0x1F....... ^_............... unit separator

Char........Dec........ Hex......... Description
sp............32...........0x20........................... space
!.............. 33...........0x21........
"..............34...........0x22........
#............. 35...........0x23........
$............. 36...........0x24........
%............ 37...........0x25........
&............ 38...........0x26........
'...............39...........0x27........
(.............. 40...........0x28........
).............. 41...........0x29........
*............. 42...........0x2A.......
+............. 43...........0x2B.......
,.............. 44...........0x2C.......
-.............. 45...........0x2D.......
............... 46...........0x2E.......
/.............. 47...........0x2F.......
0............. 48...........0x30........
1............. 49...........0x31........
2............. 50...........0x32........
3............. 51...........0x33........
4............. 52...........0x34........
5............. 53...........0x35........
6............. 54...........0x36........
7............. 55...........0x37........
8............. 56...........0x38........
9............. 57...........0x39........
:.............. 58...........0x3A.......
;.............. 59...........0x3B.......
<............. 60...........0x3C.......
=............. 61...........0x3D.......
>............. 62...........0x3E.......
?..............63...........0x3F.......
@............64...........0x40........

35

Char........Dec........ Hex.........
A............ 65...........0x41........
B.............66...........0x42........
C.............67...........0x43........
D............ 68...........0x44........
E.............69...........0x45........
F............. 70...........0x46........
G............ 71...........0x47........
H............ 72...........0x48........
I.............. 73...........0x49........
J..............74...........0x4A.......
K............ 75...........0x4B.......
L.............76...........0x4C.......
M............77...........0x4D.......
N............ 78...........0x4E.......
O............ 79...........0x4F.......
P............. 80...........0x50........
Q............ 81...........0x51........
R.............82...........0x52........
S............. 83...........0x53........
T.............84...........0x54........
U............ 85...........0x55........
V............ 86...........0x56........
W............87...........0x57........
X............ 88...........0x58........
Y............ 89...........0x59........
Z.............90...........0x5A.......
[.............. 91...........0x5B.......
\.............. 92...........0x5C.......
].............. 93...........0x5D.......
^............. 94...........0x5E.......
_............. 95...........0x5F.......
`.............. 96...........0x60

Appendix A: ASCII Table (continued)

Char..........Dec...........Hex
a................97............. 0x61..........
b................98............. 0x62..........
c................99............. 0x63..........
d................100........... 0x64..........
e................101........... 0x65..........
f................ 102........... 0x66..........
g................103........... 0x67..........
h................104........... 0x68..........
i.................105........... 0x69..........
j.................106........... 0x6A.........
k................107........... 0x6B.........
l.................108........... 0x6C.........
m...............109........... 0x6D.........
n................110........... 0x6E..........
o................111........... 0x6F..........
p................112........... 0x70..........
q................113........... 0x71..........
r................ 114........... 0x72..........
s................ 115........... 0x73..........
t.................116........... 0x74..........
u................117........... 0x75..........
v................118........... 0x76..........
w...............119........... 0x77..........
x................120........... 0x78..........
y................121........... 0x79..........
z................122........... 0x7A.........
{................123........... 0x7B.........
|.................124........... 0x7C.........
}................125........... 0x7D.........
~................126........... 0x7E..........
Del............127........... 0x7F..........
Ä...............128........... 0x80..........
Å...............129........... 0x81..........
Ç............... 130........... 0x82..........
É............... 131........... 0x83..........
—..............132........... 0x84..........
Ö...............133........... 0x85..........
Ü...............134........... 0x86..........
·.................135........... 0x87..........
à................136........... 0x88..........
â................137........... 0x89..........
ä................138........... 0x8A.........
ã................139........... 0x8B.........
å................140........... 0x8C.........
ç................141........... 0x8D.........
é................142........... 0x8E..........
è................143........... 0x8F..........
ê................144........... 0x90..........
ë................145........... 0x91..........
í.................146........... 0x92..........
ì.................147........... 0x93..........
î.................148........... 0x94..........
ï.................149........... 0x95..........
ñ................150........... 0x96..........
ó................151........... 0x97..........
ò................152........... 0x98..........
ô................153........... 0x99..........
ö................154........... 0x9A.........
õ................155........... 0x9B.........
ú................156........... 0x9C.........
ù................157........... 0x9D.........
û................158........... 0x9E..........
ü................159........... 0x9F..........
†................160........... 0xA0.........

35

Char..........Dec...........Hex
°................ 161........... 0xA1.........
¢................162........... 0xA2.........
£................163........... 0xA3.........
§................164........... 0xA4.........
•................ 165........... 0xA5.........
¶................166........... 0xA6.........
ß................167........... 0xA7.........
®...............168........... 0xA8.........
©...............169........... 0xA9.........
™..............170........... 0xAA........
´................ 171........... 0xAB.........
®...............172........... 0xAC.........
..................173........... 0xAD........
Æ.............. 174........... 0xAE.........
Ø...............175........... 0xAF.........
..................176........... 0xB0.........
±............... 177........... 0xB1.........
..................178........... 0xB2.........
..................179........... 0xB3.........
•................ 180........... 0xB4.........
µ............... 181........... 0xB5.........
..................182........... 0xB6.........
..................183........... 0xB7.........
..................184........... 0xB8.........
..................185........... 0xB9.........
..................186........... 0xBA.........
ª.................187........... 0xBB.........
º................ 188........... 0xBC.........
..................189........... 0xBD.........
æ............... 190........... 0xBE.........
ø................191........... 0xBF.........
¿................192........... 0xC0.........
¡................ 193........... 0xC1.........
¬............... 194........... 0xC2.........
..................195........... 0xC3.........
ƒ................196........... 0xC4.........
..................197........... 0xC5.........
..................198........... 0xC6.........
«................199........... 0xC7.........
»................200........... 0xC8.........
…..............201........... 0xC9
..................202........... 0xCA.........
À...............203........... 0xCB.........
Ã...............204........... 0xCC.........
Õ...............205........... 0xCD.........
Œ.............. 206........... 0xCE.........
œ...............207........... 0xCF.........
–................208........... 0xD0.........
—..............209........... 0xD1.........
“................210........... 0xD2.........
”................211........... 0xD3.........
‘................ 212........... 0xD4.........
’................ 213........... 0xD5.........
÷............... 214........... 0xD6.........
..................215........... 0xD7.........
ÿ................216........... 0xD8.........
Ÿ...............217........... 0xD9.........
⁄................. 218........... 0xDA........
€...............219........... 0xDB.........
‹................ 220........... 0xDC.........
›................ 221........... 0xDD........
fi............... 222........... 0xDE.........
fl............... 223........... 0xDF.........
‡................224........... 0xE0..........

Char..........Dec...........Hex
·.................225........... 0xE1..........
‚................ 226........... 0xE2..........
„................227........... 0xE3..........
‰..............228........... 0xE4..........
Â...............229........... 0xE5..........
..................230........... 0xE6..........
Á...............231........... 0xE7..........
Ë............... 232........... 0xE8..........
È............... 233........... 0xE9..........
Í................ 234........... 0xEA.........
Î................ 235........... 0xEB.........
Ï................ 236........... 0xEC.........
Ì................ 237........... 0xED.........
Ó...............238........... 0xEE.........
Ô...............239........... 0xEF.........
..................240........... 0xF0..........
Ò...............241........... 0xF1..........
Ú...............242........... 0xF2..........
Û...............243........... 0xF3..........
Ù...............244........... 0xF4..........
ı.................245........... 0xF5..........
ˆ................ 246........... 0xF6..........
˜................ 247........... 0xF7..........
¯................ 248........... 0xF8..........
˘................ 249........... 0xF9..........
˙................ 250........... 0xFA.........
˚................ 251........... 0xFB.........
¸................ 252........... 0xFC.........
˝................ 253........... 0xFD.........
˛................ 254........... 0xFE.........
ˇ................ 255........... 0xFF

